Sistem Lost and Found Kampus dengan Mekanisme
Verifikasi Tertutup Berbasis Golang

Implementasi Clean Architecture, Concurrency, dan Database Transaction

1%t Edward Wibisono Yulianto
Jurusan Informatika
Universitas Widya Mandala Kalijudan
Surabaya, Indonesia
edward-w.inf24 @ukwms.ac.id

Abstract—Paper ini menyajikan implementasi sistem Lost and
Found digital berbasis Golang untuk lingkungan kampus. Sistem
ini mengimplementasikan mekanisme " Verifikasi Tertutup” un-
tuk mencegah klaim palsu dengan menyembunyikan detail sensi-
tif dari publik. Arsitektur mengadopsi Clean Architecture dengan
pemisahan Handler-Service-Repository, implementasi Goroutine
untuk background worker, Database Transaction untuk integritas
data, dan Context Timeout untuk reliability. Sistem mencakup
20+ REST API endpoints dengan fitur filtering, pagination,
sorting, file upload, dan automated testing dengan coverage 40

Index Terms—Lost and Found, Golang, Clean Architecture,
Concurrency, Database Transaction, RBAC, REST API

I. PENDAHULUAN
A. Latar Belakang

Pengelolaan barang hilang di lingkungan kampus memer-
lukan sistem terpusat yang dapat memverifikasi kepemilikan
secara akurat. Sistem manual rentan terhadap fraud dan ke-
hilangan jejak audit. Sistem yang diusulkan mengimplemen-
tasikan backend modern dengan Golang yang menekankan
concurrency, transaction safety, dan security.

B. Tujuan

Membangun sistem Lost and Found yang memenuhi krite-
ria:

e 20+ REST API endpoints dengan operasi kompleks

o Database Transaction untuk ACID compliance

o Goroutine untuk background processing

o Context & Timeout untuk reliability

¢ Clean Architecture dengan Dependency Injection

o Testing dengan Table-Driven Tests dan Mocking

II. ARSITEKTUR SISTEM
A. Tech Stack

« Backend: Golang 1.21, Gin Framework

« Database: MySQL 8.0, GORM ORM

o Frontend: HTMLS, Vanilla JavaScript, Tailwind CSS

o Security: JWT Authentication, Berypt Hashing, AES-
256 Encryption

o Testing: Testify, Gomock

2"d Bambang Herlambang
Jurusan Informatika
Universitas Widya Mandala Kalijudan
Surabaya, Indonesia
bambang-h.inf24 @ukwms.com

37 Nathanael Melvin
Jurusan Informatika
Universitas Widya Mandala Kalijudan
Surabaya, Indonesia
nathanael-m.inf24 @ukwms.com

B. Clean Architecture

Sistem mengimplementasikan tiga layer terpisah:
1. Handler Layer (Presentation)

// controllers/item_controller.go

type ItemController struct {
itemService *services.ItemService

}

func (c xItemController) Createltem(ctx *gin.

Context) {

// Parse request,
response

call service, return

2. Service Layer (Business Logic)

// services/item_service.go
type ItemService struct {

itemRepo *repositories.ItemRepository
}
func (s *ItemService) Createltem(...) (xmodels
.Item, error) {

// Validation, transaction logic

3. Repository Layer (Data Access)

// repositories/item_repo.go

func (r xItemRepository) Create(item *models.
Item) error {
return r.db.Create(item) .Error

C. Role-Based Access Control
Tiga role dengan permission granular:

III. API ENDPOINTS

Sistem memiliki 25+ endpoints yang dikelompokkan
berdasarkan fungsionalitas:

TABLE I
MATRIKS RBAC
Operasi User | Manager | Admin
Buat Item

Edit Item Sendiri
Edit Item Lain
Verifikasi Claim
Kelola User
Ekspor Data

A. Authentication Endpoints

POST /api/register - Registrasi user baru dengan
validasi email & NRP

POST /api/login - Login dengan JWT token gener-
ation

POST /api/refresh-token - Refresh expired to-
ken

GET /api/me - Get current user info

B. Item Management Endpoints

GET /api/items - List items dengan filtering (status,
category, search), pagination, dan sorting

GET /api/items/:id - Get item detail (public view
untuk user, full detail untuk manager)
POST /api/items - Create
secret_details tersembunyi

PUT /api/items/:id - Update item dengan revision
log

PATCH /api/items/:id/status - Update status
item

DELETE /api/items/:id - Soft delete item

GET /api/items/:id/revisions - Get revision
history

GET /api/user/items - Get items by reporter

item dengan

C. Claim Management Endpoints

GET /api/claims - List claims dengan filter status
GET /api/claims/:id - Get claim detail dengan
verification score

POST /api/claims - Create claim dengan idempo-
tency key

POST /api/claims/:id/verify - Verify claim
(manager only)

GET /api/claims/:id/verification -
similarity score

POST /api/claims/:id/close - Close case den-
gan berita acara

POST /api/claims/:id/reopen - Reopen closed
case

POST /api/claims/:id/cancel-approval -
Cancel approval

DELETE /api/claims/:id - Delete pending claim

Get

D. Lost Item Endpoints

GET /api/lost—items - List lost item reports
POST /api/lost-items - Create lost item report

e POST /api/lost-items/:id/find-similar -
Trigger auto-matching

e GET /api/lost-items/:id/matches -
match results

Get

E. Archive & Admin Endpoints

e GET /api/archives - List archived items

e GET /api/admin/dashboard - Dashboard stats
dari database views

e GET /api/admin/audit-1logs - Audit trail dengan
pagination

e POST /api/reports/export - Export PDF/Excel
reports

F. File Upload Endpoints

e POST /api/upload/item—-image - Upload gambar
dengan resize otomatis

e POST /api/upload/claim-proof - Upload bukti
klaim

e POST /api/upload/multiple -
(max 5 files)

e DELETE /api/upload/delete - Delete uploaded
file

Batch upload

IV. FITUR TEKNIS UTAMA

A. Database Transaction

Setiap operasi kompleks menggunakan transaction dengan

proper rollback:

func

(s *ClaimService) .) error

{
return s.db.Transaction (func(tx *gorm.DB)
error
// 1. Lock claim
var claim models.Claim
if err := tx.Clauses(clause.Locking{
Strength: "UPDATE"}).
First (&claim, claimID) .Error;
= nil {
return err

VerifyClaim(. .

err

}

// 2. Create verification record

verification := &models.
ClaimVerification{...}

tx.Create (verification)

// 3. Update claim status
claim.Status = models.

ClaimStatusApproved
tx.Save (&claim)

// 4. Update item status
tx.Model (&models.Item{}) .
Where ("id = ?", claim.ItemID).
Update ("status", models.
ITtemStatusVerified)

// 5. Create notification
notification := &models.Notification
{...}

tx.Create (notification)

return nil // Commit if all success

})

B. Goroutine & Background Workers

Sistem menggunakan 4 background worker:
1. Expire Worker

func (w *ExpireWorker) Start () {
go func() {
ticker := time.NewTicker (l x time.Hour
)
for {
select {

case <-ticker.C:
w.expireItems () // Archive
expired items
case <-w.stopChan:
return

}
O

if key == "" {
ctx.Next ()
return

}

// Check if already processed

if result, exists := cache.Get (key);
exists {
ctx.JSON (200, gin.H{
"idempotent": true,
"data": result,
})
ctx.Abort ()

return

}

ctx.Next ()
// Cache result after processing

2. Matching Worker - Auto-match lost items dengan found
items setiap 30 menit

3. Notification Worker - Kirim notifikasi tertunda setiap 5
menit

4. Audit Worker - Cleanup old logs setiap 24 jam

C. Context & Timeout

Setiap database query menggunakan context dengan time-
out:

func (s *ItemService) GetAllItems(...) ([]
models.Item, error) {
ctx, cancel := context.WithTimeout (
context.Background(),
3xtime.Second
)

defer cancel ()

txRepo := repositories.NewItemRepository (
s.db.WithContext (ctx)

)

items, total, err := txRepo.FindAll(...)

if ctx.Err() == context.DeadlineExceeded {
return nil, errors.New("request

timeout")
}
return items,

total, err

E. File Upload dengan Validasi
o Validasi MIME type (image/jpeg, image/png)
+ Max size 10MB
e Auto-resize gambar ke 1920x1080
o Generate unique filename dengan timestamp
« Path traversal prevention

V. MEKANISME VERIFIKASI TERTUTUP
A. Konsep Utama

Sistem menyembunyikan secret_details dari public
view. Ketika user mengklaim item:

1) User hanya melihat nama, foto, lokasi, kategori

2) User mengisi deskripsi sendiri tentang ciri khas item

3) Manager membandingkan deskripsi user dengan
secret_details tersimpan

4) Sistem menghitung similarity score menggunakan Lev-
enshtein Distance

5) Jika score 70%, rekomendasi APPROVE

6) Jika 50-69%, rekomendasi REVIEW

7) Jika ; 50%, rekomendasi REJECT

B. Algoritma Similarity

D. Idempotency

Mencegah double-submit pada endpoint kritis dengan idem-
potency key di header:

func CalculateStringSimilarity(sl, s2 string)

floatod {

distance := levenshteinDistance(sl, s2)

maxLen := max(len(sl), len(s2))

similarity := 1.0 - (floaté64 (distance) /
maxLen)

return max (0, similarity)

VI. TESTING STRATEGY
A. Table-Driven Tests

func IdempotencyMiddleware () gin.HandlerFunc {
return func(ctx xgin.Context) {
key := ctx.GetHeader ("Idempotency-Key
")

func TestAuthService_Login(t *testing.T) {

tests := []struct {
name string
input LoginRequest

mockSetup
)

expectedError bool

func (xMockUserRepository

H
{
name: "Success: Valid Login",
input: LoginRequest{
Email: "test@example.com",
Password: "passwordl23",
}I
mockSetup: func(repo =
MockUserRepository) {
repo.On ("FindByEmail", "
test@example.com") .
Return (&models.User{...},
nil)
by

expectedError: false,

name: "Failed: Wrong Password",

input: LoginRequest{
Email: "test@example.com",
Password: "wrongpass",

by

mockSetup: func(repo =*
MockUserRepository) {
repo.On ("FindByEmail", "

test@example.com") .

Return (&models.User{...},
nil)
}I
expectedError: true,
}!
}
for _, tt := range tests {

t.Run (tt.name, func(t xtesting.T) {
mockRepo := new (MockUserRepository
)
tt.mockSetup (mockRepo)

service := &AuthService{userRepo:
mockRepo}
_, err := service.Login(tt.input,

nn wn
')

if tt.expectedError {
assert.Error(t, err)

} else {
assert.NoError (t, err)

}
b

if args.Get (0)
return nil,

== nil {
args.Error (1)
}
return args.Get (0) . (*models.User),
Error (1)

args.

VII. CONFIGURATION MANAGEMENT

Semua config diambil dari environment variables menggu-
nakan godotenv:

.env file
DB_HOST=localhost
DB_PORT=3306
DB_USER=root
DB_PASSWORD=secret
DB_NAME=1lost_and_found

JWT_SECRET_KEY=your—-secret-key
ENCRYPTION_KEY=32-byte-encryption-key

PORT=8080
ENVIRONMENT=production

Tidak ada hardcoded credentials di source code.

VIII. ERROR HANDLING & LOGGING
A. Structured Logging
Menggunakan Zap untuk JSON structured logs:

logger.Info ("Server starting",
zap.String ("port", "8080"),
zap.String ("environment", "production"),

)

logger.Error ("Database connection failed",
zap.Error (err),

zap.String ("host", dbHost),

B. Mocking

Menggunakan testify/mock untuk unit test tanpa database:

type MockUserRepository struct {
mock .Mock

}

func (m *MockUserRepository) FindByEmail (email
string) (*models.User, error) {
args := m.Called(email)

B. HTTP Status Code

Response menggunakan status code yang tepat:
e 200 OK - Success

e 201 Created - Resource created

o 400 Bad Request - Invalid input

e 401 Unauthorized - Authentication required

e 403 Forbidden - Insufficient permission

¢ 404 Not Found - Resource not found

o 422 Unprocessable Entity - Validation error

e 429 Too Many Requests - Rate limit exceeded
e 500 Internal Server Error - Server error

IX. GRACEFUL SHUTDOWN

Server mengimplementasikan graceful shutdown untuk
menyelesaikan request yang sedang berjalan:

// 1. Stop accepting new requests
srv.Shutdown (ctx)

// 2. Stop background workers
expireWorker.Stop ()
matchingWorker.Stop ()

notificationWorker.Stop () A. Postman Collection Highlights
auditWorker.Stop () . .
Collection terbagi dalam folder:

</jl/3 (331 Cl?)se database connections 1) Auth - Register, Login, Refresh Token, Get Me
ooose 2) Items - CRUD operations dengan filtering & pagination

3) Claims - Full claim workflow dari create hingga close
X. FRONTEND IMPLEMENTATION

case
Frontend menggunakan vanilla JavaScript tanpa framework: 4) Lost Items - Report & matching features
o Item List: Pagination, search, filter by category/status 5) Upload - File upload dengan multi-part form data
o Claim Form: Dynamic form validation, file upload pre- 6) Admin - Dashboard stats, audit logs, user management
view 7) Manager - Verification & case management
o Manager Dashboard: Real-time stats dari database
views . . . o XIII. COMPLIANCE CHECKLIST
« Verification Ul: Side-by-side comparison dengan simi-
larity score Sistem memenuhi seluruh kriteria penilaian UAS Backend:
« Notification Bell: Real-time notification count
XI. DATABASE DESIGN A. A. Kompleksitas & Fungsionalitas (25 Poin)
A. Core Tables
e users - User accounts dengan encrypted NRP & phone TABLE II
e roles - RBAC roles CHECKLIST KOMPLEKSITAS FITUR
e items - Found items dengan secret_details Kriteria Status
e lost_items - Lost item reports Minimal 15 endpoint (target: 20+)? 25+)
e claims - Claim submissions Pencarian dengan filter & pagination?
1ai £ . Similari Create/Update menggunakan DB Transaction?
e claim verifications - Similanty scores File handling (upload/download dengan validasi)?

e match_results - Auto-match results

e archives - Expired/closed items

e audit_logs - Audit trail .

« revision_logs - Edit history « 25 Endpoints tersebar di 7 resource groups

» notifications - User notifications * Advanced Filtering: GET
/api/items?status=unclaimed&category=electronic

o Transactional Operations: VerifyClaim, CloseClaim,

Detail Implementation:

B. Database Views

Sistem menggunakan 5 views untuk optimasi query: Createltem dengan audit log
e« vw_dashboard_stats - Aggregate statistics o File Upload: Validasi MIME type (image/jpeg, im-
e vw_items_detail - Items dengan join category & age/png), max 10MB, auto-resize

reporter
o vw_claims_detail - Claims dengan verification data B B Golang Engineering (15 Poin)
e vw_match_results_detail - Match results

lengkap
e vw_recent_activities - Latest audit logs (limit TABLE I

100) CHECKLIST GOLANG ENGINEERING

XII. API DOCUMENTATION Kriteria : Status
Background process dengan Goroutine?
Dokumentasi lengkap API tersedia di Postman: Aplikasi lulus tes go run -race?
Context & Timeout pada database query?
Postman Documentation URL: Tdempotency untuk endpoint Kritis?
https:
//documenter.getpostman.com/view/48307750/2sB3dTs84R Detail Implementation:

Dokumentasi mencakup: o 4 Background Workers: ExpireWorker (archiving),
o Request Examples - Sample request body untuk setiap MatchingWorker ~ (auto-match), NotificationWorker

endpoint (alerts), AuditWorker (cleanup)
« Response Examples - Expected response format (success o Race-free: Menggunakan sync.WaitGroup,

& error) sync.Mutex, dan proper channel closing
o Authentication - JWT Bearer token setup o Context Timeout: Setiap database operation dibatasi 3-5
« Environment Variables - Base URL configuration detik
¢ Error Codes - Comprehensive error handling documen- + Idempotency: Header Idempotency—Key pada POST

tation /api/claims

https://documenter.getpostman.com/view/48307750/2sB3dTs84R
https://documenter.getpostman.com/view/48307750/2sB3dTs84R

TABLE IV
CHECKLIST ARCHITECTURE

Kriteria

Status |®

Clean Architecture (Handler-Service-Repository)?

Config dari .env (tidak hardcoded)?

Error handling & structured logging?

API mengembalikan HTTP status code yang benar?

Graceful shutdown?

C. C. Architecture & Quality (30 Poin)

Detail Implementation:

Dependency Injection: Service layer menerima reposi-
tory interface

Environment Variables: DB credentials, JWT secret,
encryption key dari .env

Zap Logger: JSON structured logs dengan level (Info,
Warn, Error)

Status Codes: 200 OK, 201 Created, 400 Bad Request,
401 Unauthorized, 403 Forbidden, 404 Not Found, 422
Validation Error, 429 Rate Limit, 500 Internal Error
Graceful Shutdown: Stop HTTP server — Stop workers
— Close DB connections

D. D. Testing & Reliability (30 Poin)

TABLE V
CHECKLIST TESTING

Environment Variables untuk semua konfigurasi (zero
hardcoded secrets)

Structured Logging dengan Zap (JSON format)
Proper HTTP Status Codes pada semua response
Graceful Shutdown dengan proper cleanup sequence
Table-Driven Tests dengan 45% coverage

Mocking untuk offline unit testing

Race-free (lulus go run -race)

Idempotency untuk mencegah double-submit

File Upload dengan validasi MIME type dan size

Sistem ini menyediakan solusi yang aman, scalable, dan
maintainable untuk pengelolaan barang hilang dan ditemukan
di lingkungan kampus dengan mekanisme verifikasi tertutup
yang mencegah klaim palsu.

[1]

[2]
[3]
[4]

Kriteria

Status

Unit Test menggunakan Table-Driven pattern?

Unit Test menggunakan Mock (offline)?

Test coverage minimal 40%?

Test untuk negative cases?

Detail Implementation:

Table-Driven Tests: TestAuthService_Login den-
gan 4+ test cases

Mocking: MockUserRepository,
MockRoleRepository menggunakan testify/mock
Coverage: 45% (target 40%)

Negative Tests: Wrong password, expired token, unau-
thorized access, validation errors

XIV. KESIMPULAN

Sistem Lost and Found yang diimplementasikan memenuhi
100% kriteria penilaian UAS Backend:

25+ Endpoints dengan operasi kompleks (filtering, pag-
ination, sorting)

Database Transaction untuk ACID compliance pada 5+
operasi kritis

4 Background Workers dengan Goroutine, WaitGroup,
dan proper synchronization

Context Timeout pada setiap database query untuk reli-
ability

Clean Architecture dengan Dependency Injection untuk
testability

REFERENCES

The Go Programming Language Specification, “https://go.dev/ref/spec,”
2024.

Gin Web Framework, “https://gin-gonic.com/docs/,” 2024.

GORM Documentation, “https://gorm.io/docs/,” 2024.

Clean Architecture, Robert C. Martin, Prentice Hall, 2017.

	Pendahuluan
	Latar Belakang
	Tujuan

	Arsitektur Sistem
	Tech Stack
	Clean Architecture
	Role-Based Access Control

	API Endpoints
	Authentication Endpoints
	Item Management Endpoints
	Claim Management Endpoints
	Lost Item Endpoints
	Archive & Admin Endpoints
	File Upload Endpoints

	Fitur Teknis Utama
	Database Transaction
	Goroutine & Background Workers
	Context & Timeout
	Idempotency
	File Upload dengan Validasi

	Mekanisme Verifikasi Tertutup
	Konsep Utama
	Algoritma Similarity

	Testing Strategy
	Table-Driven Tests
	Mocking

	Configuration Management
	Error Handling & Logging
	Structured Logging
	HTTP Status Code

	Graceful Shutdown
	Frontend Implementation
	Database Design
	Core Tables
	Database Views

	API Documentation
	Postman Collection Highlights

	Compliance Checklist
	A. Kompleksitas & Fungsionalitas (25 Poin)
	B. Golang Engineering (15 Poin)
	C. Architecture & Quality (30 Poin)
	D. Testing & Reliability (30 Poin)

	Kesimpulan
	References

