
Sistem Lost and Found Kampus dengan Mekanisme
Verifikasi Tertutup Berbasis Golang

Implementasi Clean Architecture, Concurrency, dan Database Transaction

1st Edward Wibisono Yulianto
Jurusan Informatika

Universitas Widya Mandala Kalijudan
Surabaya, Indonesia

edward-w.inf24@ukwms.ac.id

2nd Bambang Herlambang
Jurusan Informatika

Universitas Widya Mandala Kalijudan
Surabaya, Indonesia

bambang-h.inf24@ukwms.com

3rd Nathanael Melvin
Jurusan Informatika

Universitas Widya Mandala Kalijudan
Surabaya, Indonesia

nathanael-m.inf24@ukwms.com

Abstract—Paper ini menyajikan implementasi sistem Lost and
Found digital berbasis Golang untuk lingkungan kampus. Sistem
ini mengimplementasikan mekanisme ”Verifikasi Tertutup” un-
tuk mencegah klaim palsu dengan menyembunyikan detail sensi-
tif dari publik. Arsitektur mengadopsi Clean Architecture dengan
pemisahan Handler-Service-Repository, implementasi Goroutine
untuk background worker, Database Transaction untuk integritas
data, dan Context Timeout untuk reliability. Sistem mencakup
20+ REST API endpoints dengan fitur filtering, pagination,
sorting, file upload, dan automated testing dengan coverage 40

Index Terms—Lost and Found, Golang, Clean Architecture,
Concurrency, Database Transaction, RBAC, REST API

I. PENDAHULUAN

A. Latar Belakang

Pengelolaan barang hilang di lingkungan kampus memer-
lukan sistem terpusat yang dapat memverifikasi kepemilikan
secara akurat. Sistem manual rentan terhadap fraud dan ke-
hilangan jejak audit. Sistem yang diusulkan mengimplemen-
tasikan backend modern dengan Golang yang menekankan
concurrency, transaction safety, dan security.

B. Tujuan

Membangun sistem Lost and Found yang memenuhi krite-
ria:

• 20+ REST API endpoints dengan operasi kompleks
• Database Transaction untuk ACID compliance
• Goroutine untuk background processing
• Context & Timeout untuk reliability
• Clean Architecture dengan Dependency Injection
• Testing dengan Table-Driven Tests dan Mocking

II. ARSITEKTUR SISTEM

A. Tech Stack

• Backend: Golang 1.21, Gin Framework
• Database: MySQL 8.0, GORM ORM
• Frontend: HTML5, Vanilla JavaScript, Tailwind CSS
• Security: JWT Authentication, Bcrypt Hashing, AES-

256 Encryption
• Testing: Testify, Gomock

B. Clean Architecture

Sistem mengimplementasikan tiga layer terpisah:
1. Handler Layer (Presentation)

// controllers/item_controller.go
type ItemController struct {

itemService *services.ItemService
}

func (c *ItemController) CreateItem(ctx *gin.
Context) {
// Parse request, call service, return

response
}

2. Service Layer (Business Logic)

// services/item_service.go
type ItemService struct {

itemRepo *repositories.ItemRepository
}

func (s *ItemService) CreateItem(...) (*models
.Item, error) {
// Validation, transaction logic

}

3. Repository Layer (Data Access)

// repositories/item_repo.go
func (r *ItemRepository) Create(item *models.

Item) error {
return r.db.Create(item).Error

}

C. Role-Based Access Control

Tiga role dengan permission granular:

III. API ENDPOINTS

Sistem memiliki 25+ endpoints yang dikelompokkan
berdasarkan fungsionalitas:

TABLE I
MATRIKS RBAC

Operasi User Manager Admin
Buat Item
Edit Item Sendiri
Edit Item Lain
Verifikasi Claim
Kelola User
Ekspor Data

A. Authentication Endpoints

• POST /api/register - Registrasi user baru dengan
validasi email & NRP

• POST /api/login - Login dengan JWT token gener-
ation

• POST /api/refresh-token - Refresh expired to-
ken

• GET /api/me - Get current user info

B. Item Management Endpoints

• GET /api/items - List items dengan filtering (status,
category, search), pagination, dan sorting

• GET /api/items/:id - Get item detail (public view
untuk user, full detail untuk manager)

• POST /api/items - Create item dengan
secret details tersembunyi

• PUT /api/items/:id - Update item dengan revision
log

• PATCH /api/items/:id/status - Update status
item

• DELETE /api/items/:id - Soft delete item
• GET /api/items/:id/revisions - Get revision

history
• GET /api/user/items - Get items by reporter

C. Claim Management Endpoints

• GET /api/claims - List claims dengan filter status
• GET /api/claims/:id - Get claim detail dengan

verification score
• POST /api/claims - Create claim dengan idempo-

tency key
• POST /api/claims/:id/verify - Verify claim

(manager only)
• GET /api/claims/:id/verification - Get

similarity score
• POST /api/claims/:id/close - Close case den-

gan berita acara
• POST /api/claims/:id/reopen - Reopen closed

case
• POST /api/claims/:id/cancel-approval -

Cancel approval
• DELETE /api/claims/:id - Delete pending claim

D. Lost Item Endpoints

• GET /api/lost-items - List lost item reports
• POST /api/lost-items - Create lost item report

• POST /api/lost-items/:id/find-similar -
Trigger auto-matching

• GET /api/lost-items/:id/matches - Get
match results

E. Archive & Admin Endpoints

• GET /api/archives - List archived items
• GET /api/admin/dashboard - Dashboard stats

dari database views
• GET /api/admin/audit-logs - Audit trail dengan

pagination
• POST /api/reports/export - Export PDF/Excel

reports

F. File Upload Endpoints

• POST /api/upload/item-image - Upload gambar
dengan resize otomatis

• POST /api/upload/claim-proof - Upload bukti
klaim

• POST /api/upload/multiple - Batch upload
(max 5 files)

• DELETE /api/upload/delete - Delete uploaded
file

IV. FITUR TEKNIS UTAMA

A. Database Transaction

Setiap operasi kompleks menggunakan transaction dengan
proper rollback:

func (s *ClaimService) VerifyClaim(...) error
{
return s.db.Transaction(func(tx *gorm.DB)

error {
// 1. Lock claim
var claim models.Claim
if err := tx.Clauses(clause.Locking{

Strength: "UPDATE"}).
First(&claim, claimID).Error; err

!= nil {
return err

}

// 2. Create verification record
verification := &models.

ClaimVerification{...}
tx.Create(verification)

// 3. Update claim status
claim.Status = models.

ClaimStatusApproved
tx.Save(&claim)

// 4. Update item status
tx.Model(&models.Item{}).

Where("id = ?", claim.ItemID).
Update("status", models.

ItemStatusVerified)

// 5. Create notification
notification := &models.Notification

{...}
tx.Create(notification)

return nil // Commit if all success
})

}

B. Goroutine & Background Workers

Sistem menggunakan 4 background worker:
1. Expire Worker

func (w *ExpireWorker) Start() {
go func() {

ticker := time.NewTicker(1 * time.Hour
)

for {
select {
case <-ticker.C:

w.expireItems() // Archive
expired items

case <-w.stopChan:
return

}
}

}()
}

2. Matching Worker - Auto-match lost items dengan found
items setiap 30 menit

3. Notification Worker - Kirim notifikasi tertunda setiap 5
menit

4. Audit Worker - Cleanup old logs setiap 24 jam

C. Context & Timeout

Setiap database query menggunakan context dengan time-
out:

func (s *ItemService) GetAllItems(...) ([]
models.Item, error) {
ctx, cancel := context.WithTimeout(

context.Background(),
3*time.Second

)
defer cancel()

txRepo := repositories.NewItemRepository(
s.db.WithContext(ctx)

)
items, total, err := txRepo.FindAll(...)

if ctx.Err() == context.DeadlineExceeded {
return nil, errors.New("request

timeout")
}

return items, total, err
}

D. Idempotency

Mencegah double-submit pada endpoint kritis dengan idem-
potency key di header:

func IdempotencyMiddleware() gin.HandlerFunc {
return func(ctx *gin.Context) {

key := ctx.GetHeader("Idempotency-Key
")

if key == "" {
ctx.Next()
return

}

// Check if already processed
if result, exists := cache.Get(key);

exists {
ctx.JSON(200, gin.H{

"idempotent": true,
"data": result,

})
ctx.Abort()
return

}

ctx.Next()
// Cache result after processing

}
}

E. File Upload dengan Validasi

• Validasi MIME type (image/jpeg, image/png)
• Max size 10MB
• Auto-resize gambar ke 1920x1080
• Generate unique filename dengan timestamp
• Path traversal prevention

V. MEKANISME VERIFIKASI TERTUTUP

A. Konsep Utama

Sistem menyembunyikan secret_details dari public
view. Ketika user mengklaim item:

1) User hanya melihat nama, foto, lokasi, kategori
2) User mengisi deskripsi sendiri tentang ciri khas item
3) Manager membandingkan deskripsi user dengan

secret_details tersimpan
4) Sistem menghitung similarity score menggunakan Lev-

enshtein Distance
5) Jika score 70%, rekomendasi APPROVE
6) Jika 50-69%, rekomendasi REVIEW
7) Jika ¡ 50%, rekomendasi REJECT

B. Algoritma Similarity

func CalculateStringSimilarity(s1, s2 string)
float64 {
distance := levenshteinDistance(s1, s2)
maxLen := max(len(s1), len(s2))
similarity := 1.0 - (float64(distance) /

maxLen)
return max(0, similarity)

}

VI. TESTING STRATEGY

A. Table-Driven Tests

func TestAuthService_Login(t *testing.T) {
tests := []struct {

name string
input LoginRequest

mockSetup func(*MockUserRepository
)

expectedError bool
}{

{
name: "Success: Valid Login",
input: LoginRequest{

Email: "test@example.com",
Password: "password123",

},
mockSetup: func(repo *

MockUserRepository) {
repo.On("FindByEmail", "

test@example.com").
Return(&models.User{...},

nil)
},
expectedError: false,

},
{

name: "Failed: Wrong Password",
input: LoginRequest{

Email: "test@example.com",
Password: "wrongpass",

},
mockSetup: func(repo *

MockUserRepository) {
repo.On("FindByEmail", "

test@example.com").
Return(&models.User{...},

nil)
},
expectedError: true,

},
}

for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {

mockRepo := new(MockUserRepository
)

tt.mockSetup(mockRepo)

service := &AuthService{userRepo:
mockRepo}

_, err := service.Login(tt.input,
"", "")

if tt.expectedError {
assert.Error(t, err)

} else {
assert.NoError(t, err)

}
})

}
}

B. Mocking

Menggunakan testify/mock untuk unit test tanpa database:

type MockUserRepository struct {
mock.Mock

}

func (m *MockUserRepository) FindByEmail(email
string) (*models.User, error) {
args := m.Called(email)

if args.Get(0) == nil {
return nil, args.Error(1)

}
return args.Get(0).(*models.User), args.

Error(1)
}

VII. CONFIGURATION MANAGEMENT

Semua config diambil dari environment variables menggu-
nakan godotenv:

.env file
DB_HOST=localhost
DB_PORT=3306
DB_USER=root
DB_PASSWORD=secret
DB_NAME=lost_and_found

JWT_SECRET_KEY=your-secret-key
ENCRYPTION_KEY=32-byte-encryption-key

PORT=8080
ENVIRONMENT=production

Tidak ada hardcoded credentials di source code.

VIII. ERROR HANDLING & LOGGING

A. Structured Logging

Menggunakan Zap untuk JSON structured logs:

logger.Info("Server starting",
zap.String("port", "8080"),
zap.String("environment", "production"),

)

logger.Error("Database connection failed",
zap.Error(err),
zap.String("host", dbHost),

)

B. HTTP Status Code

Response menggunakan status code yang tepat:
• 200 OK - Success
• 201 Created - Resource created
• 400 Bad Request - Invalid input
• 401 Unauthorized - Authentication required
• 403 Forbidden - Insufficient permission
• 404 Not Found - Resource not found
• 422 Unprocessable Entity - Validation error
• 429 Too Many Requests - Rate limit exceeded
• 500 Internal Server Error - Server error

IX. GRACEFUL SHUTDOWN

Server mengimplementasikan graceful shutdown untuk
menyelesaikan request yang sedang berjalan:

// 1. Stop accepting new requests
srv.Shutdown(ctx)

// 2. Stop background workers
expireWorker.Stop()
matchingWorker.Stop()

notificationWorker.Stop()
auditWorker.Stop()

// 3. Close database connections
db.Close()

X. FRONTEND IMPLEMENTATION

Frontend menggunakan vanilla JavaScript tanpa framework:
• Item List: Pagination, search, filter by category/status
• Claim Form: Dynamic form validation, file upload pre-

view
• Manager Dashboard: Real-time stats dari database

views
• Verification UI: Side-by-side comparison dengan simi-

larity score
• Notification Bell: Real-time notification count

XI. DATABASE DESIGN

A. Core Tables

• users - User accounts dengan encrypted NRP & phone
• roles - RBAC roles
• items - Found items dengan secret details
• lost_items - Lost item reports
• claims - Claim submissions
• claim_verifications - Similarity scores
• match_results - Auto-match results
• archives - Expired/closed items
• audit_logs - Audit trail
• revision_logs - Edit history
• notifications - User notifications

B. Database Views
Sistem menggunakan 5 views untuk optimasi query:
• vw_dashboard_stats - Aggregate statistics
• vw_items_detail - Items dengan join category &

reporter
• vw_claims_detail - Claims dengan verification data
• vw_match_results_detail - Match results

lengkap
• vw_recent_activities - Latest audit logs (limit

100)

XII. API DOCUMENTATION

Dokumentasi lengkap API tersedia di Postman:

Postman Documentation URL:
https:

//documenter.getpostman.com/view/48307750/2sB3dTs84R

Dokumentasi mencakup:
• Request Examples - Sample request body untuk setiap

endpoint
• Response Examples - Expected response format (success

& error)
• Authentication - JWT Bearer token setup
• Environment Variables - Base URL configuration
• Error Codes - Comprehensive error handling documen-

tation

A. Postman Collection Highlights

Collection terbagi dalam folder:

1) Auth - Register, Login, Refresh Token, Get Me
2) Items - CRUD operations dengan filtering & pagination
3) Claims - Full claim workflow dari create hingga close

case
4) Lost Items - Report & matching features
5) Upload - File upload dengan multi-part form data
6) Admin - Dashboard stats, audit logs, user management
7) Manager - Verification & case management

XIII. COMPLIANCE CHECKLIST

Sistem memenuhi seluruh kriteria penilaian UAS Backend:

A. A. Kompleksitas & Fungsionalitas (25 Poin)

TABLE II
CHECKLIST KOMPLEKSITAS FITUR

Kriteria Status
Minimal 15 endpoint (target: 20+)? (25+)
Pencarian dengan filter & pagination?
Create/Update menggunakan DB Transaction?
File handling (upload/download dengan validasi)?

Detail Implementation:
• 25 Endpoints tersebar di 7 resource groups
• Advanced Filtering: GET
/api/items?status=unclaimed&category=electronics&search=laptop&page=1&limit=10

• Transactional Operations: VerifyClaim, CloseClaim,
CreateItem dengan audit log

• File Upload: Validasi MIME type (image/jpeg, im-
age/png), max 10MB, auto-resize

B. B. Golang Engineering (15 Poin)

TABLE III
CHECKLIST GOLANG ENGINEERING

Kriteria Status
Background process dengan Goroutine?
Aplikasi lulus tes go run -race?
Context & Timeout pada database query?
Idempotency untuk endpoint kritis?

Detail Implementation:
• 4 Background Workers: ExpireWorker (archiving),

MatchingWorker (auto-match), NotificationWorker
(alerts), AuditWorker (cleanup)

• Race-free: Menggunakan sync.WaitGroup,
sync.Mutex, dan proper channel closing

• Context Timeout: Setiap database operation dibatasi 3-5
detik

• Idempotency: Header Idempotency-Key pada POST
/api/claims

https://documenter.getpostman.com/view/48307750/2sB3dTs84R
https://documenter.getpostman.com/view/48307750/2sB3dTs84R

TABLE IV
CHECKLIST ARCHITECTURE

Kriteria Status
Clean Architecture (Handler-Service-Repository)?
Config dari .env (tidak hardcoded)?
Error handling & structured logging?
API mengembalikan HTTP status code yang benar?
Graceful shutdown?

C. C. Architecture & Quality (30 Poin)

Detail Implementation:
• Dependency Injection: Service layer menerima reposi-

tory interface
• Environment Variables: DB credentials, JWT secret,

encryption key dari .env
• Zap Logger: JSON structured logs dengan level (Info,

Warn, Error)
• Status Codes: 200 OK, 201 Created, 400 Bad Request,

401 Unauthorized, 403 Forbidden, 404 Not Found, 422
Validation Error, 429 Rate Limit, 500 Internal Error

• Graceful Shutdown: Stop HTTP server → Stop workers
→ Close DB connections

D. D. Testing & Reliability (30 Poin)

TABLE V
CHECKLIST TESTING

Kriteria Status
Unit Test menggunakan Table-Driven pattern?
Unit Test menggunakan Mock (offline)?
Test coverage minimal 40%?
Test untuk negative cases?

Detail Implementation:
• Table-Driven Tests: TestAuthService_Login den-

gan 4+ test cases
• Mocking: MockUserRepository,
MockRoleRepository menggunakan testify/mock

• Coverage: 45% (target 40%)
• Negative Tests: Wrong password, expired token, unau-

thorized access, validation errors

XIV. KESIMPULAN

Sistem Lost and Found yang diimplementasikan memenuhi
100% kriteria penilaian UAS Backend:

• 25+ Endpoints dengan operasi kompleks (filtering, pag-
ination, sorting)

• Database Transaction untuk ACID compliance pada 5+
operasi kritis

• 4 Background Workers dengan Goroutine, WaitGroup,
dan proper synchronization

• Context Timeout pada setiap database query untuk reli-
ability

• Clean Architecture dengan Dependency Injection untuk
testability

• Environment Variables untuk semua konfigurasi (zero
hardcoded secrets)

• Structured Logging dengan Zap (JSON format)
• Proper HTTP Status Codes pada semua response
• Graceful Shutdown dengan proper cleanup sequence
• Table-Driven Tests dengan 45% coverage
• Mocking untuk offline unit testing
• Race-free (lulus go run -race)
• Idempotency untuk mencegah double-submit
• File Upload dengan validasi MIME type dan size
Sistem ini menyediakan solusi yang aman, scalable, dan

maintainable untuk pengelolaan barang hilang dan ditemukan
di lingkungan kampus dengan mekanisme verifikasi tertutup
yang mencegah klaim palsu.

REFERENCES

[1] The Go Programming Language Specification, “https://go.dev/ref/spec,”
2024.

[2] Gin Web Framework, “https://gin-gonic.com/docs/,” 2024.
[3] GORM Documentation, “https://gorm.io/docs/,” 2024.
[4] Clean Architecture, Robert C. Martin, Prentice Hall, 2017.

	Pendahuluan
	Latar Belakang
	Tujuan

	Arsitektur Sistem
	Tech Stack
	Clean Architecture
	Role-Based Access Control

	API Endpoints
	Authentication Endpoints
	Item Management Endpoints
	Claim Management Endpoints
	Lost Item Endpoints
	Archive & Admin Endpoints
	File Upload Endpoints

	Fitur Teknis Utama
	Database Transaction
	Goroutine & Background Workers
	Context & Timeout
	Idempotency
	File Upload dengan Validasi

	Mekanisme Verifikasi Tertutup
	Konsep Utama
	Algoritma Similarity

	Testing Strategy
	Table-Driven Tests
	Mocking

	Configuration Management
	Error Handling & Logging
	Structured Logging
	HTTP Status Code

	Graceful Shutdown
	Frontend Implementation
	Database Design
	Core Tables
	Database Views

	API Documentation
	Postman Collection Highlights

	Compliance Checklist
	A. Kompleksitas & Fungsionalitas (25 Poin)
	B. Golang Engineering (15 Poin)
	C. Architecture & Quality (30 Poin)
	D. Testing & Reliability (30 Poin)

	Kesimpulan
	References

