
Web-Based Lost and Found Management System
for Campus Environment with Auto-Matching and
AI Chatbot Using Go Backend and React Frontend

1st Edward Wibisono Yulianto
Department of Informatics

Widya Mandala Kalijudan University
Surabaya, Indonesia

edward-w.inf24@ukwms.ac.id

2nd Bambang Herlambang
Department of Informatics

Widya Mandala Kalijudan University
Surabaya, Indonesia

bambang-h.inf24@ukwms.ac.id

3rd Nathanael Melvin
Department of Informatics

Widya Mandala Kalijudan University
Surabaya, Indonesia

nathanael-m.inf24@ukwms.ac.id

Abstract—The Lost and Found System is a client-server web-
based application designed to manage lost and found items
in a campus environment. The system is built using RESTful
API architecture with a Go (Golang)-based backend and React
frontend. MySQL database is used for data storage with transac-
tion support to ensure data consistency. The system implements
several key features: management of found items and lost item
reports, a multi-stage verification claim system, an automatic
matching algorithm using string similarity (Levenshtein Distance)
to connect lost items with found items, and AI chatbot integration
using Groq API to assist users in searching and reporting.
The role-based access control (RBAC) architecture enables three
access levels: user, manager, and admin, each with different access
rights. To improve operational efficiency, the system is equipped
with background workers that perform automatic tasks such as
archiving expired items, automatic matching between lost and
found items, and sending real-time notifications to users. The
system also provides audit logging features for tracking user
activities and data export in Excel and PDF formats for reporting
purposes. Implementation using repository pattern and service
layer ensures separation of concerns and facilitates maintenance.
Middleware for JWT authentication, rate limiting, and CORS
protection ensures system security. With graceful shutdown and
context timeout approaches, the system can handle high loads
stably. Test results show that the system can effectively manage
the claim process and improve the success rate of returning lost
items to their owners.

Index Terms—Lost and Found System, RESTful API, String
Similarity Algorithm, Role-Based Access Control, Background
Workers, AI Chatbot Integration, Microservices Architecture

I. INTRODUCTION

A. Background

The loss of personal belongings is a common problem
that frequently occurs in high-mobility campus environments
such as universities, schools, and other educational institutions.
Students and academic community members often lose impor-
tant items such as wallets, keys, electronic devices, academic
documents, and other personal belongings in various campus
locations such as classrooms, libraries, cafeterias, and other
public areas. On the other hand, many found items cannot

Identify applicable funding agency here. If none, delete this.

be returned to their owners due to limitations in effective
management systems.

Conventional lost and found management systems that still
rely on manual recording, announcements through information
boards, or social media groups have several significant limita-
tions. The item search process is time-consuming, information
is not well-organized, there is no clear verification mechanism
for the claim process, and data trails are often lost, preventing
items from being returned to their owners. Additionally, there
is no adequate tracking system to monitor item status from
reporting to return.

The development of information technology and web-based
systems provides solutions to overcome these problems. A
web-based Lost and Found system can provide a centralized
platform to manage the entire process of reporting lost items,
registering found items, claim verification process, and re-
turning items to their owners. By utilizing string similarity
algorithms and artificial intelligence technology, the system
can automatically match lost items with found items based on
reported characteristics, thereby accelerating the identification
process and increasing the likelihood of items being returned
to their owners.

This system is built using modern architecture with a Go
(Golang)-based backend known for its high performance and
excellent concurrent processing, and a React-based frontend
for a responsive and interactive user interface. Implementation
of role-based access control (RBAC) ensures that each user
has access rights appropriate to their role, while background
workers perform automatic tasks such as item matching and
data archiving. AI chatbot integration using Groq API provides
users with convenience in conducting searches and obtaining
interactive assistance.

B. Problem Formulation

Based on the background described above, this research will
address several problem formulations as follows:

1) How to design an effective information system to man-
age lost and found items in a campus environment?

2) How to implement a string similarity algorithm to auto-
matically match lost items with found items?

3) How to design a secure claim verification system to
ensure items are returned to legitimate owners?

4) How to integrate an AI chatbot to assist users in the item
search and reporting process?

5) How to implement background workers to perform au-
tomatic tasks such as matching and archiving?

6) How to design a system with scalable and maintainable
architecture using good software engineering patterns?

C. Research Objectives
This research has the following objectives:
1) To design and implement a web-based Lost and Found

information system with RESTful API architecture using
Go and React.

2) To implement the Levenshtein Distance algorithm to
calculate similarity scores between lost and found items,
enabling effective auto-matching.

3) To build a multi-stage claim verification system in-
volving users, managers, and admins with a structured
approval mechanism.

4) To integrate a Groq API-based AI chatbot to provide in-
teractive assistance to users in item search and reporting
processes.

5) To implement background workers using goroutines to
perform automatic tasks such as auto-matching, auto-
archiving, and notification delivery.

6) To apply software engineering best practices such as
repository pattern, service layer, middleware architec-
ture, and dependency injection to ensure maintainable
and testable code.

D. Problem Scope
To maintain research focus and ensure optimal results, this

research has the following limitations:
1) The system is specifically designed for campus environ-

ments with three user levels: user (students/staff), man-
ager (administrator), and admin (system administrator).

2) The matching algorithm used is string similarity based
on Levenshtein Distance with configurable threshold.

3) Claim verification uses secret details that are only known
by the item owner and verified by managers or admins.

4) The AI chatbot uses Groq API with the LLaMA 3.3 70B
Versatile model for natural language processing.

5) The system only manages data in text and image for-
mats, excluding videos or complex documents.

6) Background workers run periodically with predeter-
mined intervals (matching: 30 minutes, expiration check:
1 hour).

7) The system does not include integration with payment
systems or rewards for item finders.

8) System notifications are only through in-app notifica-
tions, excluding email or SMS notifications.

E. Research Benefits
This research is expected to provide the following benefits:

1) Theoretical Benefits:
1) To contribute to the development of web-based manage-

ment information systems with a Lost and Found system
case study.

2) To demonstrate practical implementation of string sim-
ilarity algorithms (Levenshtein Distance) in real-world
application contexts.

3) To provide a reference for implementing microservices
architecture and background workers using Go (Golang).

4) To demonstrate the application of AI integration in
information systems to enhance user experience.

5) To provide a case study of role-based access control
(RBAC) implementation in multi-user web applications.

2) Practical Benefits:
1) For educational institutions: Providing an effective sys-

tem to manage lost and found items, improving services
to students and the academic community.

2) For users: Facilitating the process of reporting lost
items and searching for found items with a user-friendly
interface and AI chatbot assistance.

3) For administrators: Providing tools to verify claims,
manage item data, and generate reports for audit pur-
poses.

4) For developers: Providing an implementation reference
for systems with clean, scalable architecture that follows
best practices.

5) For the community: Increasing the likelihood that lost
items can be returned to their owners through a well-
organized system.

II. LITERATURE REVIEW

This chapter discusses the theoretical foundation and tech-
nologies used in developing the Lost and Found System,
including RESTful API architecture, design patterns, string
similarity algorithms, security mechanisms, and artificial in-
telligence integration.

A. RESTful API Architecture

REST (Representational State Transfer) is an architectural
style for designing networked applications that uses HTTP
methods to perform CRUD operations. The Lost and Found
System implements RESTful principles through structured
endpoints that map to specific resources.

The system uses standard HTTP methods: GET for retriev-
ing data, POST for creating new resources, PUT/PATCH for
updates, and DELETE for removal operations. Each endpoint
follows a clear naming convention, such as /api/items for
item management and /api/claims for claim processing.
The API returns standardized JSON responses with consistent
structure including status codes, messages, and data payloads.

According to Fielding’s REST constraints, the system im-
plements stateless communication where each request contains
all necessary information for processing. The server maintains
no client context between requests, with authentication han-
dled through JWT tokens passed in request headers. This state-

less design enables horizontal scaling and improves system
reliability.

B. Design Patterns

The system implements several software engineering pat-
terns to ensure maintainability, testability, and separation of
concerns.

1) Repository Pattern: The Repository Pattern provides
an abstraction layer between the business logic and data
access layer. Each entity (Item, LostItem, Claim, User) has a
dedicated repository that encapsulates all database operations.
For example, ItemRepository handles all database queries
related to items, including CRUD operations, complex queries
with filters, and transaction management.

This pattern offers several advantages: it centralizes data
access logic, makes the codebase more testable by allowing
repository mocking, and provides a consistent interface for
data operations. The repository layer uses GORM as the ORM
framework, which provides type-safe database operations and
automatic query generation.

2) Service Layer Pattern: The Service Layer Pattern en-
capsulates business logic separate from controllers and repos-
itories. Services like ClaimService, ItemService, and
MatchService contain the core business rules and orches-
trate multiple repository operations when needed.

For instance, the claim verification process in
ClaimService involves multiple steps: validating the
claim, calculating similarity scores, updating item status,
creating notifications, and logging audit trails. By centralizing
this logic in a service, the system ensures consistency across
different entry points and simplifies testing of business rules.

3) Dependency Injection: The system uses dependency
injection to manage component dependencies. Controllers re-
ceive repository and service dependencies through constructor
injection, making components loosely coupled and easily
testable. This approach follows SOLID principles, particularly
the Dependency Inversion Principle, where high-level modules
depend on abstractions rather than concrete implementations.

C. String Similarity Algorithm

The automatic matching feature uses the Levenshtein Dis-
tance algorithm to calculate similarity between text strings.
This algorithm measures the minimum number of single-
character edits (insertions, deletions, or substitutions) required
to transform one string into another.

1) Levenshtein Distance Implementation: The implementa-
tion uses dynamic programming to compute the edit distance
efficiently. Given two strings s1 and s2, the algorithm creates
a matrix where dp[i][j] represents the minimum edit distance
between the first i characters of s1 and the first j characters
of s2.

The recurrence relation is:

dp[i][j] = min


dp[i− 1][j] + 1 (deletion)
dp[i][j − 1] + 1 (insertion)
dp[i− 1][j − 1] + cost (substitution)

(1)

where cost = 0 if s1[i] = s2[j], otherwise cost = 1.
The similarity score is then calculated as:

similarity = 1− distance

max(len(s1), len(s2))
(2)

This produces a normalized score between 0 and 1, where 1
indicates identical strings and 0 indicates completely different
strings.

2) Text Normalization: Before calculating similarity, the
system applies text normalization: converting to lowercase,
removing special characters, and filtering stopwords. This
preprocessing improves matching accuracy by focusing on
meaningful content words rather than common function words.

The matching algorithm considers multiple fields with
weighted scores. Name similarity receives 50% weight while
description similarity receives 50% weight. A match is con-
sidered significant when the combined score exceeds the
configured threshold (typically 50%).

D. Role-Based Access Control (RBAC)

The system implements RBAC to manage user permissions
across three roles: User, Manager, and Admin. Each role has
specific permissions defined in the database, allowing fine-
grained access control.

1) Permission System: Permissions are defined as action-
resource pairs (e.g., item:create, claim:approve).
The Role model contains a many-to-many relationship with
Permission, allowing flexible assignment of permissions
to roles. Middleware functions check user permissions before
allowing access to protected endpoints.

For example, only users with claim:approve permission
(Managers and Admins) can verify claims. Regular users can
create claims but cannot approve them. This separation ensures
proper workflow enforcement and maintains data integrity.

2) Hierarchical Access: The system implements a hierar-
chical access model where higher-level roles inherit permis-
sions from lower levels. Admins can perform all Manager
operations, and Managers can perform all User operations.
This simplifies permission management while maintaining
security boundaries.

E. Authentication and Security

1) JSON Web Tokens (JWT): The system uses JWT for
stateless authentication. Upon successful login, the server gen-
erates a token containing user ID, email, and role information.
This token is cryptographically signed using HMAC-SHA256
with a secret key.

Each subsequent request includes the JWT in the Au-
thorization header as a Bearer token. The JWT middleware
validates the token signature, checks expiration, and loads user
information for authorization decisions. Tokens expire after 7
days, requiring users to re-authenticate periodically.

2) Password Security: User passwords are hashed using
bcrypt, an adaptive hash function designed for password
storage. Bcrypt incorporates a salt to prevent rainbow table
attacks and uses a configurable work factor to remain resistant
to brute-force attacks as computing power increases.

3) Data Encryption: Sensitive personal information (NRP,
phone numbers) is encrypted using AES-256 in GCM mode
before storage. The encryption key is stored securely as an
environment variable. This ensures that even if the database is
compromised, sensitive data remains protected.

4) Rate Limiting: The system implements rate limiting to
prevent abuse and DoS attacks. Each IP address is limited to
1000 requests per minute. The rate limiter uses an in-memory
map to track request counts per IP address, with automatic
cleanup of stale entries.

F. Background Workers and Concurrency

1) Goroutines for Concurrent Processing: The system uses
Go’s goroutines for concurrent background tasks. Four main
workers run continuously: ExpireWorker for archiving
expired items, MatchingWorker for automatic item match-
ing, NotificationWorker for sending notifications, and
AuditWorker for log aggregation.

Goroutines are lightweight threads managed by the Go
runtime, enabling efficient concurrent execution without the
overhead of OS threads. Each worker runs in its own gorou-
tine, allowing parallel processing of different tasks.

2) Worker Pool Pattern: The ExpireWorker implements
a worker pool pattern with 5 concurrent workers processing
expired items. This pattern provides controlled concurrency,
preventing resource exhaustion while maximizing throughput.
A task queue (buffered channel) holds items to be processed,
and workers consume tasks concurrently.

3) Graceful Shutdown: The system implements graceful
shutdown using WaitGroups and stop channels. When a shut-
down signal is received, workers complete their current tasks
before terminating. The HTTP server stops accepting new
connections but completes in-flight requests. This prevents
data loss and ensures clean system termination.

G. Database Design and Transactions

1) Relational Database Schema: The system uses
MySQL with a normalized relational schema. Key
tables include users, items, lost_items, claims,
match_results, and notifications. Foreign key
constraints maintain referential integrity, and indexes optimize
query performance.

The schema uses soft deletes (deleted at timestamp) to
preserve data history. This allows recovery of accidentally
deleted records and maintains audit trails for compliance
purposes.

2) Transaction Management: Database transactions ensure
ACID properties for complex operations. For example, the
claim verification process wraps multiple operations in a trans-
action: updating claim status, modifying item status, creating
notifications, and logging audit entries. If any step fails, the
entire transaction rolls back, maintaining data consistency.

The system uses GORM’s transaction API with proper error
handling. Row-level locking prevents concurrent modification
conflicts in critical sections, such as claim approval where mul-
tiple managers might process the same claim simultaneously.

3) Stored Procedures: The system leverages MySQL stored
procedures for complex operations like automatic archiving.
The sp_archive_expired_items procedure efficiently
identifies and archives expired items in a single database
round-trip, reducing network overhead and improving perfor-
mance.

H. Artificial Intelligence Integration

1) Groq API and LLaMA Model: The system integrates an
AI chatbot using the Groq API with the LLaMA 3.3 70B
Versatile model. Groq provides high-performance inference
for large language models, enabling real-time conversational
interactions.

The chatbot assists users in item searches, report guidance,
and claim process explanation. It receives context about the
user’s lost items and recent found items, providing personal-
ized responses based on system state.

2) Intent Recognition: The system implements basic intent
recognition by analyzing keywords in user messages. Four
main intents are detected: search_item, report_lost,
claim_help, and general. The detected intent guides re-
sponse generation, providing relevant information and actions.

3) Context Management: Each chat request includes con-
versation history and relevant system context. The system
builds context by querying the user’s lost item reports and
searching for relevant found items. This context is included
in the AI prompt, enabling informed responses that reference
specific items and match results.

I. API Request Lifecycle

The complete lifecycle of an API request demonstrates the
integration of all architectural components:

1) Request arrives at the Gin router and passes through
middleware layers

2) CORS middleware handles cross-origin requests
3) Rate limiter checks request quota for the client IP
4) JWT middleware validates authentication token and

loads user data
5) Role middleware verifies user has required permissions
6) Request reaches the appropriate controller
7) Controller delegates business logic to service layer
8) Service coordinates multiple repositories for data oper-

ations
9) Repositories execute database queries using GORM

10) Response flows back through the layers with standard-
ized format

11) Background workers process asynchronous tasks (noti-
fications, matching)

This layered architecture provides separation of concerns,
making the system maintainable, testable, and scalable. Each
layer has a specific responsibility and communicates through
well-defined interfaces.

J. System Reliability and Error Handling

1) Context Timeouts: All database operations use Go’s con-
text package with timeouts (typically 3-15 seconds depending

on complexity). This prevents hung requests from blocking
resources indefinitely. If an operation exceeds its timeout, it
returns an error that can be handled gracefully.

2) Transaction Rollback: The system implements com-
prehensive transaction error handling. When any operation
within a transaction fails, the entire transaction rolls back
automatically. This prevents partial updates that could leave
the database in an inconsistent state.

3) Structured Error Responses: All API errors return struc-
tured JSON responses with consistent format: success status,
error message, and optional error details. This standardization
simplifies client-side error handling and debugging.

The system distinguishes between client errors (4xx status
codes) for invalid requests and server errors (5xx status codes)
for internal failures, following HTTP best practices.

K. Audit Logging and Monitoring

The system maintains comprehensive audit logs tracking all
significant actions. Each log entry records the user, action type,
affected entity, timestamp, IP address, and user agent. This
provides accountability and enables security analysis.

Revision logs track changes to item data, recording the field
changed, old value, new value, and reason for change. This
audit trail supports compliance requirements and enables data
recovery if needed.

The logging strategy balances detail with performance, us-
ing asynchronous logging to avoid blocking request processing
while ensuring important events are captured.

III. SYSTEM DESIGN AND IMPLEMENTATION

This chapter presents the detailed design and implementa-
tion of the Lost and Found System, including the database
schema, system architecture, component design, and imple-
mentation strategies. The system employs a microservices-
oriented architecture with RESTful API design principles,
background workers for automated tasks, and a comprehensive
security framework.

A. Database Design

The database design forms the foundation of the Lost and
Found System, implementing a normalized relational schema
that ensures data integrity, supports complex queries, and
maintains audit trails for compliance purposes.

1) Entity Relationship Diagram: The system database con-
sists of 15 interconnected tables organized into functional do-
mains: user management, item management, claim processing,
matching system, and audit logging. Figure 1 illustrates the
complete entity relationship diagram showing all entities, their
attributes, and relationships.

The database schema implements several key design pat-
terns:

Soft Delete Pattern: All primary tables include a
deleted_at timestamp field, enabling logical deletion
rather than physical removal of records. This preserves data
history and supports recovery of accidentally deleted items
while maintaining referential integrity.

Fig. 1. Entity Relationship Diagram of Lost and Found System Database

Audit Trail Design: The audit_logs and
revision_logs tables maintain comprehensive records of
all system activities. The audit log captures high-level actions
(create, update, delete, verify) with associated metadata
including IP addresses and user agents. The revision log
tracks field-level changes to items, storing old values, new
values, and reasons for modification.

Polymorphic Relationships: The claims table imple-
ments polymorphic associations, allowing claims to reference
either found items (regular claims) or lost item reports (direct
claims). This design enables two distinct claim workflows
within a unified data structure.

2) Core Database Tables: Users and Roles: The user
management system implements role-based access control
(RBAC) through the users, roles, permissions, and
role_permissions tables. Users are assigned to roles (ad-
min, manager, user), and roles contain collections of permis-
sions that define allowed actions. This flexible design enables
fine-grained access control without hardcoding permissions in
application logic.

The users table stores encrypted sensitive information
including NRP (student identification numbers) and phone
numbers using AES-256-GCM encryption. The encryption key
is stored securely as an environment variable and initialized
during system startup.

Items and Lost Items: Found items are stored in the
items table with comprehensive metadata including dis-
covery location, date found, public description, and secret
details. The secret_details field contains confidential
information known only to the true owner, used for claim
verification. The expires_at field automatically calculates
to 90 days from the date found, after which items are eligible
for archiving.

Lost item reports in the lost_items table capture char-
acteristics of missing items to enable automatic matching.
The table includes fields for color, expected location, and
detailed descriptions that feed into the similarity algorithm.
The direct_claim_id foreign key links to claims when
finders directly contact owners.

Claims and Verification: The claims table manages
the claim submission and verification process. Each claim
references either an item (regular claim) or a lost item

(direct claim) through nullable foreign keys item_id and
lost_item_id. Claims progress through statuses: pending,
approved, rejected, waiting owner, or verified.

The claim_verifications table stores similarity
scores and matched keywords generated by the Levenshtein
Distance algorithm. The similarity_score field (0-100)
quantifies the match quality between claim descriptions and
secret details. The is_auto_matched boolean indicates
whether the verification was system-generated or manual.

Match Results: Automatic matching results are stored in
match_results, linking lost items to found items with
similarity scores above the configured threshold (typically
50%). The matched_fields JSON field contains detailed
breakdown of which attributes matched (name, description,
color) and their individual scores. The is_notified flag
tracks whether users have been informed of potential matches.

Archives: The archives table preserves historical records
of items removed from active inventory. Items are archived
when they expire (90 days unclaimed) or when cases are
closed (successfully returned to owner). The archive maintains
a complete snapshot of the item’s final state including the
berita_acara_no (official handover document number)
and bukti_serah_terima (proof of delivery) for closed
cases.

Notifications: The notifications table implements an
in-app notification system. Notifications are created for events
including match discoveries, claim status changes, and case
closures. The entity_type and entity_id fields provide
polymorphic links to related records, enabling navigation to
relevant items from notifications.

Chat Messages: The AI chatbot integration stores conver-
sation history in chat_messages. Each message records
the user’s query, the AI-generated response, detected intent
(search item, report lost, claim help, general), and contextual
data used for response generation. The confidence_score
field quantifies the intent detection certainty.

3) Database Indexes and Performance Optimization: The
schema includes strategic indexes to optimize query perfor-
mance:

• Primary Keys: All tables use auto-incrementing integer
primary keys for efficient joins and foreign key refer-
ences.

• Foreign Key Indexes: Indexes on all foreign key
columns (user_id, item_id, category_id, etc.)
accelerate join operations and referential integrity checks.

• Status Indexes: Composite indexes on status
fields (items.status, claims.status,
lost_items.status) enable fast filtering of
active records.

• Timestamp Indexes: Indexes on created_at,
expires_at, and deleted_at support temporal
queries and soft delete filtering.

• Unique Indexes: Unique constraints on users.email,
categories.slug, and archives.item_id pre-
vent duplicate entries.

4) Database Constraints and Referential Integrity: Foreign
key constraints maintain referential integrity with appropriate
cascading behaviors:

• ON DELETE CASCADE: Applied to dependent records
that should be removed when parent is deleted (claims
when items deleted, notifications when users deleted).

• ON DELETE SET NULL: Applied to optional refer-
ences that should be preserved (verified by when man-
ager deleted, claimed by when user deleted).

• ON DELETE RESTRICT: Applied to critical references
that prevent deletion (categories referenced by items,
roles referenced by users).

B. System Architecture

The Lost and Found System implements a layered archi-
tecture that separates concerns and promotes maintainability,
testability, and scalability. Figure 2 illustrates the complete
system architecture.

Fig. 2. Lost and Found System Architecture

1) Architectural Layers: Presentation Layer: The presen-
tation layer consists of static HTML, CSS, and JavaScript files
served by the Gin web framework. The frontend implements
a single-page application (SPA) pattern with role-specific
interfaces:

• index.html: Public landing page for browsing found
items

• user.html: User dashboard for reporting lost items and
managing claims

• manager.html: Manager interface for claim verifica-
tion and item management

• admin.html: Administrator panel for user manage-
ment, categories, and system configuration

The JavaScript frontend is organized into modular compo-
nents (ItemCard.js, ClaimCard.js, Modal.js, etc.)
that communicate with the backend via RESTful API calls.
The api.js utility module handles HTTP requests, authen-
tication token injection, and error handling.

API Layer: The RESTful API layer exposes HTTP end-
points for all system operations. The routes.go module
defines endpoint mappings and associates them with controller
functions. API routes are grouped by domain:

• /api/auth/*: Authentication endpoints (register, lo-
gin, refresh token)

• /api/items/*: Found item management
• /api/lost-items/*: Lost item reports
• /api/claims/*: Claim submission and verification
• /api/matches/*: Match result queries
• /api/admin/*: Administrative operations
• /api/ai/*: AI chatbot interactions
Middleware Layer: HTTP requests pass through a pipeline

of middleware functions before reaching controllers:
1) CORSMiddleware: Handles cross-origin resource

sharing headers
2) LoggerMiddleware: Records request details for

monitoring
3) RateLimiterMiddleware: Prevents abuse with

per-IP rate limiting (1000 requests/minute)
4) JWTMiddleware: Validates authentication tokens and

loads user context
5) RoleMiddleware: Enforces permission-based access

control
6) IdempotencyMiddleware: Prevents duplicate sub-

missions for sensitive operations
Controller Layer: Controllers handle HTTP

request/response processing and input validation. Each
controller focuses on a specific domain:

• AuthController: User registration, login, token re-
fresh

• ItemController: CRUD operations for found items
• LostItemController: Lost item report management
• ClaimController: Claim submission and verification

workflow
• MatchController: Similarity search and match re-

trieval
• AdminController: System administration functions
• AIController: Chatbot message processing
Controllers validate input using the Gin binding framework,

extract user context from middleware, invoke appropriate
service methods, and format responses using utility functions.

Service Layer: The service layer implements business
logic and orchestrates complex operations. Services coordinate
multiple repositories and handle transaction management:

• AuthService: Password hashing, token generation,
user validation

• ItemService: Item lifecycle management, expiration
handling

• ClaimService: Multi-stage claim verification, case
closure

• MatchService: Similarity calculation, automatic
matching

• AIService: Groq API integration, intent detection,
context building

Services encapsulate business rules, ensuring consistent
behavior across different entry points. For example, the claim
verification process in ClaimService involves:

1) Locking the claim record with pessimistic locking
2) Calculating similarity score between claim and item
3) Creating or updating verification record

4) Updating claim and item status
5) Resolving related lost item reports
6) Creating user notifications
7) Logging audit entries
Repository Layer: Repositories provide an abstraction

over database operations, encapsulating GORM queries and
transaction management:

• UserRepository: User CRUD, authentication queries
• ItemRepository: Item queries with filtering, search,

pagination
• ClaimRepository: Claim queries with complex joins
• MatchResultRepository: Match persistence and

retrieval
• NotificationRepository: Notification creation

and marking read
The repository pattern enables testing with mock implemen-

tations and provides a consistent interface for data access. All
database operations use GORM’s context-aware methods with
timeout handling to prevent hung requests.

Worker Layer: Background workers run as concurrent
goroutines, performing scheduled and periodic tasks:

• ExpireWorker: Archives items that have exceeded 90-
day retention period

• MatchingWorker: Runs automatic matching algo-
rithm every 30 minutes

• NotificationWorker: Sends pending notifications
every 5 minutes

• AuditWorker: Aggregates and processes audit log en-
tries

Workers implement graceful shutdown through stop chan-
nels and WaitGroups, ensuring in-progress tasks complete
before system termination.

C. Request Processing Flow

Figure 3 illustrates the complete lifecycle of an API request
through the system architecture.

A typical authenticated request follows this path:
1) HTTP request arrives at Gin router
2) CORS middleware adds cross-origin headers
3) Rate limiter checks request quota for client IP
4) Logger middleware records request details
5) JWT middleware validates token, loads user from

database
6) Role middleware verifies user has required permissions
7) Router dispatches request to appropriate controller
8) Controller validates input and extracts parameters
9) Controller invokes service layer method with user con-

text
10) Service begins database transaction if needed
11) Service coordinates multiple repository operations
12) Repositories execute GORM queries with context time-

out
13) Transaction commits or rolls back based on success
14) Service returns result or error to controller
15) Controller formats response using utility functions

Fig. 3. API Request Processing Flow

16) Response flows back through middleware layers
17) HTTP response sent to client with appropriate status

code

Context timeouts are applied at each layer: 15 seconds
for complex queries, 5 seconds for simple operations, and
3 seconds for single-record lookups. This prevents resource
exhaustion from slow queries while allowing sufficient time
for legitimate operations.

D. Claim Processing Workflow

The claim verification process represents one of the most
complex workflows in the system. Figure 4 illustrates the
complete state machine for claim processing.

1) Regular Claim Flow: When a user submits a claim for
a found item:

1) User completes claim form with description of item
characteristics

2) System validates no pending claim exists for same
user/item pair

3) System validates item is in claimable status (unclaimed
or pending claim)

4) System creates claim record with status ”pending”
5) System updates item status to ”pending claim”

Fig. 4. Claim Verification Workflow

6) System calculates similarity score between claim de-
scription and item’s secret details using Levenshtein
Distance algorithm

7) System creates verification record with similarity score
and matched keywords

8) Notification sent to managers about new claim requiring
verification

9) Manager reviews claim, similarity score, and available
evidence

10) Manager approves or rejects claim with explanatory
notes

11) If approved:
• Claim status updated to ”approved”
• Item status updated to ”verified”
• Related lost item reports resolved to ”found” status
• Notification sent to claimer about approval
• Notification sent to other users with matching lost

items
12) If rejected:

• Claim status updated to ”rejected”
• Item status reverts to ”unclaimed” if no other pend-

ing claims
• Notification sent to claimer with rejection reason

13) After approval, manager closes case with official han-
dover documentation

14) System archives item with case closure metadata
15) Lost item reports marked as ”closed”

2) Direct Claim Flow: When a finder directly contacts an
owner who posted a lost item report:

1) Finder submits direct claim on lost item report
2) System creates claim with status ”waiting owner”
3) Lost item status updated to ”claimed”
4) Notification sent to owner about potential match
5) Owner reviews finder’s description and evidence
6) Owner approves or rejects direct claim
7) If approved:

• Claim status updated to ”verified”
• Lost item status updated to ”found”
• Notification sent to finder with contact information
• Owner and finder coordinate item return
• Owner or finder confirms completion
• Lost item status updated to ”completed”

8) If rejected:
• Claim status updated to ”rejected”
• Lost item status reverts to ”active”
• Direct claim link removed
• Notification sent to finder

E. Automatic Matching Algorithm

The automatic matching system uses string similarity al-
gorithms to identify potential matches between lost items
and found items. Figure 5 illustrates the matching algorithm
workflow.

Fig. 5. Automatic Matching Algorithm Workflow

1) Levenshtein Distance Implementation: The core match-
ing algorithm calculates similarity using the Levenshtein Dis-
tance metric, which measures the minimum number of single-
character edits (insertions, deletions, substitutions) required to
transform one string into another.

The implementation uses dynamic programming with a
matrix where dp[i][j] represents the edit distance between the
first i characters of string s1 and the first j characters of string
s2:

dp[i][j] = min


dp[i− 1][j] + 1 (deletion)
dp[i][j − 1] + 1 (insertion)
dp[i− 1][j − 1] + cost (substitution)

(3)

where cost = 0 if s1[i] = s2[j], otherwise cost = 1.
The normalized similarity score is calculated as:

similarity = 1− distance

max(len(s1), len(s2))
(4)

This produces a score between 0 and 1, where 1 indicates
identical strings and 0 indicates completely different strings.

2) Text Normalization: Before similarity calculation, both
strings undergo normalization:

1) Convert to lowercase for case-insensitive comparison
2) Remove special characters and punctuation
3) Replace multiple spaces with single space
4) Trim leading and trailing whitespace
5) Extract keywords by removing stopwords
The stopword list includes common Indonesian and English

words (”dan”, ”atau”, ”dengan”, ”the”, ”a”, ”an”) that do not
contribute meaningful information to matching.

3) Weighted Field Matching: The final match score com-
bines multiple field similarities with configurable weights:

scorefinal = (scorename×0.5)+(scoredescription×0.5) (5)

The name field receives 50% weight as item names are dis-
tinctive identifiers. The description field receives 50% weight
as it contains detailed characteristics.

For claims, the algorithm compares claim descriptions
against item secret details (if available) or public descriptions
(if secret details empty). This prioritizes confidential informa-
tion during verification.

4) Match Threshold and Classification: Matches are clas-
sified based on similarity score thresholds:

• High match: score ≥ 70%
• Medium match: 50% ≤ score < 70%
• Low match: 30% ≤ score < 50%
Only matches scoring above 50% trigger automatic notifi-

cations to users. Matches between 30-50% are stored but not
actively promoted, available for manual review.

5) Matching Worker Process: The MatchingWorker runs
every 30 minutes, executing the following process:

1) Query all unclaimed items from database
2) For each item:

• Query active lost items in same category
• Calculate similarity score for each lost item
• Filter matches above threshold (50%)
• Check if match already exists in database
• Create new match records for novel matches
• Store matched fields as JSON for debugging
• Mark matches as unnotified

3) NotificationWorker processes unnotified matches
4) Users receive notifications about potential matches

F. Authentication and Security

The system implements multiple security layers to protect
user data and prevent unauthorized access.

1) JWT-Based Authentication: Authentication uses JSON
Web Tokens (JWT) with the following characteristics:

• Algorithm: HMAC-SHA256 for token signing
• Expiration: 7 days for standard tokens, 30 days for

refresh tokens
• Claims: User ID, email, role name, issued time, expira-

tion time
• Secret Key: Stored securely as environment variable
The authentication flow:
1) User submits credentials to /api/login
2) System validates email and password hash
3) System checks user status (active vs blocked)
4) System loads user role and permissions
5) System generates JWT with user claims
6) Token returned to client in response
7) Client stores token in localStorage or memory
8) Client includes token in Authorization header for sub-

sequent requests
9) Server validates token signature and expiration

10) Server loads user from database if token valid
11) Server denies access if token invalid or expired
2) Password Security: User passwords undergo secure

hashing using bcrypt:
• Algorithm: bcrypt with adaptive cost factor
• Work Factor: Cost of 10 (1024 iterations)
• Salt: Unique random salt per password
• Hash Length: 60-character output
The adaptive cost factor allows the hash difficulty to in-

crease over time as computing power advances, maintaining
resistance to brute-force attacks.

3) Data Encryption: Sensitive personal information (NRP,
phone numbers) is encrypted at rest using AES-256-GCM:

• Algorithm: AES-256 in GCM (Galois/Counter Mode)
• Key Size: 256 bits (32 bytes)
• Authentication: GCM provides both encryption and au-

thentication
• Nonce: Unique random nonce per encryption
• Storage: Encrypted values stored as Base64 strings
The encryption key is loaded from environment variables

during initialization and never logged or exposed through
APIs.

4) Role-Based Access Control: The permission system im-
plements fine-grained access control through permission slugs:

• item:create: Create found items
• item:read: View item details
• item:update: Modify item information
• item:delete: Delete items
• item:verify: Verify claims
• claim:create: Submit claims
• claim:read: View claims
• claim:approve: Approve or reject claims
• user:read: View user lists
• user:update: Modify user details
• user:block: Block or unblock users

• report:export: Export system reports

Permissions are checked at the middleware layer before
requests reach controllers, preventing unauthorized access at
the earliest possible point.

G. AI Chatbot Integration

The AI chatbot provides interactive assistance using the
Groq API with the LLaMA 3.3 70B Versatile model.

1) Intent Detection: The system analyzes user messages to
detect intent before generating responses:

• search item: Keywords like ”cari”, ”temukan”, ”ada”,
”lihat”

• report lost: Keywords like ”hilang”, ”kehilangan”, ”la-
por”

• claim help: Keywords like ”klaim”, ”ambil”, ”punya
saya”

• general: Default for unmatched patterns

Intent detection enables context-appropriate responses and
guides the AI to provide relevant information.

2) Context Building: For each chat request, the system
builds rich context:

1) Query user’s lost item reports (last 5)
2) Search relevant found items based on message keywords
3) Extract match results for user’s lost items
4) Format context as structured text
5) Include context in system prompt

Example context structure:

Barang yang dilaporkan hilang:
- Dompet Kulit (Accessories) - Status: active
- Kunci Motor Honda (Keys) - Status: active

Barang ditemukan yang relevan:
- ID: 123, Dompet (Wallet) - Lokasi: Perpustakaan
- ID: 124, Dompet Hitam (Wallet) - Lokasi: Kantin

3) AI Response Generation: The Groq API receives two
prompts:

System Prompt: Defines the AI’s role, capabilities, re-
sponse format, and behavioral guidelines. Instructs the AI
to act as ”FindItBot”, a campus lost and found assistant,
using Indonesian language, emoji for clarity, and structured
responses with item IDs.

User Prompt: Contains the user’s message, detected intent,
and built context. Structured as:

KONTEKS PENGGUNA:
[user context here]

INTENT TERDETEKSI: search_item

PERTANYAAN: Apakah ada dompet yang ditemukan?

The Groq API returns a conversational response that refer-
ences specific items by ID and provides actionable guidance.

4) Chat History Management: Conversation history is per-
sisted in the database:

• Each message-response pair stored as record
• User can retrieve last N messages
• Intent and confidence score logged for analysis
• Context data stored as JSON for debugging
• History can be cleared by user

H. Background Workers Implementation

Background workers implement scheduled and periodic
tasks using Go’s concurrency primitives.

1) Expire Worker Architecture: The ExpireWorker imple-
ments a worker pool pattern with 5 concurrent workers:

1) Main goroutine runs periodic timer (1 hour interval)
2) Timer triggers item expiration check
3) System queries items past 90-day retention
4) Items dispatched to buffered task channel (capacity 100)
5) Worker goroutines consume tasks from channel
6) Each worker processes one item in transaction:

• Acquire pessimistic lock on item
• Verify item still unclaimed
• Create archive record
• Update item status to expired
• Create audit log entry
• Commit transaction

7) Worker pool provides controlled concurrency
8) Main goroutine tracks completion with WaitGroup
The worker pool pattern prevents resource exhaustion while

maximizing throughput. Buffered channels provide backpres-
sure if workers cannot keep pace with task generation.

2) Graceful Shutdown: All workers implement graceful
shutdown:

1) Main program receives SIGINT or SIGTERM signal
2) Shutdown signal sent to all worker stop channels
3) Workers stop accepting new tasks
4) Workers complete in-progress tasks
5) WaitGroups block until all workers finished
6) Database connections closed
7) HTTP server stops accepting requests
8) In-flight HTTP requests complete
9) Program exits cleanly
Graceful shutdown ensures data consistency and prevents

corruption from interrupted operations. The system enforces a
30-second shutdown timeout, after which forceful termination
occurs.

I. Error Handling and Logging

The system implements comprehensive error handling and
structured logging.

1) Error Response Format: All API errors return consistent
JSON structure:

{
"success": false,
"message": "User-facing error message",
"error": "Technical error details",

"timestamp": "2025-01-15T10:30:00Z"
}

HTTP status codes follow REST conventions:
• 200: Success
• 201: Created
• 400: Bad Request (invalid input)
• 401: Unauthorized (invalid/missing token)
• 403: Forbidden (insufficient permissions)
• 404: Not Found
• 409: Conflict (duplicate entry)
• 500: Internal Server Error
2) Structured Logging: The system uses Zap for structured,

high-performance logging:
• Production mode: JSON format, Info level
• Development mode: Console format, Debug level
• Log fields: timestamp, level, message, caller, stack trace
• Context fields: user id, ip address, request id
Critical events logged include:
• Authentication attempts (success/failure)
• Permission denials
• Database transaction failures
• Background worker execution
• API errors and panics
• System startup/shutdown

J. Testing and Quality Assurance
The layered architecture facilitates comprehensive testing at

multiple levels.
1) Unit Testing: Unit tests verify individual components in

isolation:
• Service layer tests with mock repositories
• Utility function tests (similarity algorithm, encryption)
• Middleware tests with mock HTTP contexts
• Model method tests (validation, state transitions)
Mock implementations of repository interfaces enable ser-

vice testing without database dependencies.
2) Integration Testing: Integration tests verify component

interactions:
• API endpoint tests with test database
• Service + repository tests with transactions
• Authentication flow tests
• Worker execution tests
Integration tests use test fixtures and database transactions

that rollback after each test, maintaining test isolation.
3) Load Testing: Load tests verify system performance

under stress:
• Concurrent user simulation
• API endpoint throughput measurement
• Database connection pool sizing
• Worker queue capacity testing
Performance targets include:
• Item query: < 100ms (p95)
• Claim submission: < 500ms (p95)
• Matching calculation: < 2s for 1000 items
• Concurrent users: 100 simultaneous

K. Deployment Architecture

The system supports deployment in containerized and tra-
ditional server environments.

L. Configuration Management

The system uses environment-based configuration to support
multiple deployment scenarios. Configuration parameters are
loaded from environment variables with sensible defaults:

• Database Configuration: Host, port, username, pass-
word, database name, character set, and connection pool-
ing parameters.

• Server Configuration: Port number, environment mode
(development/production), upload path, maximum file
size, and allowed CORS origins.

• JWT Configuration: Secret key, token expiration time,
and refresh token lifetime.

• Groq API Configuration: API key, model selection (de-
fault: llama-3.3-70b-versatile), max tokens, temperature,
and top-p parameters.

• Encryption Configuration: AES-256-GCM encryption
key for sensitive data protection.

The configuration loader (config.go) provides accessor
functions that retrieve values from environment variables with
fallback defaults. This enables seamless deployment across
development, staging, and production environments without
code changes.

M. Security Implementation

The system implements defense-in-depth security with mul-
tiple protective layers.

1) Authentication Flow: User authentication follows a se-
cure token-based flow:

1) User submits credentials via POST /api/login
2) AuthController validates input format
3) AuthService retrieves user from database
4) Password hash verified using bcrypt with cost factor 10
5) User status checked (active vs blocked)
6) JWT generated with user claims (ID, email, role)
7) Token signed with HMAC-SHA256
8) Token and user data returned to client
9) Client stores token (localStorage or memory)

10) Subsequent requests include token in Authorization
header

11) JWTMiddleware validates token on each request
Token refresh is supported through POST

/api/refresh-token, which validates the existing token
and issues a new one with extended expiration, maintaining
session continuity without requiring re-authentication.

2) Input Validation: All API endpoints implement com-
prehensive input validation using Gin’s binding framework.
Validation rules include:

• Required fields: binding:"required" tag ensures
mandatory data presence

• Format validation: Email addresses validated with RFC
5322 regex

• Length constraints: Minimum password length of 6
characters

• Type safety: Automatic conversion and validation of
numeric types

• Enum validation: Status fields restricted to predefined
constants

• Date validation: Timestamps validated and normalized
to UTC

Invalid requests return 400 Bad Request with detailed error
messages identifying the specific validation failures, enabling
client-side correction.

3) SQL Injection Prevention: GORM’s parameterized
queries prevent SQL injection attacks. All database operations
use prepared statements with bound parameters:

db.Where("email = ?", email).First(&user)

The ? placeholder is replaced with a properly escaped pa-
rameter value, preventing malicious SQL from being executed.
Raw SQL queries are avoided throughout the codebase.

4) XSS Protection: Cross-site scripting (XSS) attacks are
mitigated through multiple mechanisms:

• Content-Type headers set to application/json
• HTML special characters escaped in all outputs
• No dynamic HTML generation on server side
• Frontend implements Content Security Policy (CSP)
• User-generated content sanitized before display

N. File Upload System

The file upload system enables users to attach photos to
items and claims while ensuring security and performance.

1) Upload Controller Implementation: The
UploadController handles multiple upload scenarios:

• Single item image: POST
/api/upload/item-image

• Claim proof: POST /api/upload/claim-proof
• Multiple images: POST /api/upload/multiple
• Image deletion: DELETE /api/upload/delete
• Image metadata: GET /api/upload/info

Upload validation includes:
• Maximum file size: 10 MB per file
• Allowed MIME types: image/jpeg, image/png, image/gif
• File extension verification
• Magic number validation to prevent disguised files
• Filename sanitization to prevent directory traversal
2) Storage Strategy: Files are stored in the local filesystem

under ./uploads with organized subdirectories:

uploads/
items/ # Found item photos
claims/ # Claim proof documents
lost_items/ # Lost item reference photos
temp/ # Temporary uploads

Each file is renamed to a UUID to prevent name collisions
and information leakage. The database stores the file path as
a URL-accessible reference.

O. API Response Standardization

All API responses follow a consistent JSON structure,
enabling predictable client-side handling.

1) Success Response Format: Successful operations return:

{
"success": true,
"message": "Operation completed successfully",
"data": { ... },
"timestamp": "2025-01-15T10:30:00Z"

}

2) Error Response Format: Failed operations return:

{
"success": false,
"message": "User-friendly error message",
"error": "Technical error details",
"timestamp": "2025-01-15T10:30:00Z"

}

3) Pagination Response Format: Paginated endpoints re-
turn:

{
"success": true,
"data": [...],
"pagination": {
"page": 1,
"limit": 20,
"total": 157,
"pages": 8

}
}

Utility functions in utils/response.go ensure consis-
tent formatting across all controllers.

P. Performance Optimization

The system implements several optimizations to ensure
responsive performance under load.

1) Database Query Optimization: Query performance is
optimized through:

• Strategic Indexes: All foreign keys, status fields, and
commonly searched columns have indexes

• Selective Preloading: Related entities loaded only when
needed using GORM’s Preload directives

• Query Result Limiting: All list endpoints enforce pag-
ination with configurable limits

• Covering Indexes: Composite indexes on frequently
combined filters (status + date)

• Connection Pooling: Database connection pool sized for
expected concurrent users (max 100 connections)

2) Caching Strategy: While the current implementation
prioritizes data consistency over caching, future optimizations
could include:

• Category list caching (rarely changes)
• User role and permission caching

• Recent items list caching with short TTL
• Redis-based session storage
3) Concurrency Control: Go’s goroutines enable efficient

concurrent processing:
• Background workers run concurrently without blocking

API requests
• Worker pool pattern limits resource consumption
• Buffered channels provide backpressure handling
• Context timeouts prevent hung operations
• Pessimistic database locking prevents race conditions

Q. Monitoring and Observability

The system includes comprehensive logging and monitoring
capabilities.

1) Structured Logging: Zap structured logger provides
high-performance logging with:

• JSON format in production for log aggregation
• Console format in development for readability
• Log levels: Debug, Info, Warn, Error, Fatal
• Contextual fields: user id, request id, timestamp
• Automatic stack trace capture for errors
• Log rotation and retention policies
Critical events logged include:
• All authentication attempts (success/failure)
• Permission denials
• Database transaction failures
• Background worker execution
• API errors and panics
• System startup and shutdown
2) Audit Trail: The audit_logs table provides compre-

hensive activity tracking:
• User ID and timestamp for all actions
• Action type (create, update, delete, approve, etc.)
• Entity type and ID affected
• Detailed description of changes
• IP address and user agent for forensics
• Soft-deleted for data retention compliance
Audit logs support:
• Compliance requirements and security investigations
• User activity reports and analytics
• Debugging and troubleshooting
• Rollback identification
3) Health Checks: The system exposes health check end-

points for monitoring:
• Database connectivity verification
• Background worker status
• Disk space availability
• Memory usage metrics

R. Deployment Architecture

1) Docker Containerization: The application is container-
ized using Docker for consistent deployment:

FROM golang:1.21-alpine AS builder
WORKDIR /app

COPY go.mod go.sum ./
RUN go mod download
COPY . .
RUN go build -o main cmd/server/main.go

FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /app/main .
COPY --from=builder /app/web ./web
EXPOSE 8080
CMD ["./main"]

Docker Compose orchestrates the multi-container deploy-
ment:

version: ’3.8’
services:
app:
build: .
ports:
- "8080:8080"

environment:
- DB_HOST=db
- DB_PORT=3306

depends_on:
- db

db:
image: mysql:8.0
environment:
- MYSQL_ROOT_PASSWORD=secret
- MYSQL_DATABASE=lostfound

volumes:
- db_data:/var/lib/mysql

volumes:
db_data:

2) Environment Management: Different environments use
separate configuration files:

• .env.development: Local development settings
• .env.staging: Pre-production testing
• .env.production: Production deployment
Sensitive credentials are never committed to version control

and are injected at deployment time through environment
variables or secrets management systems.

3) Database Migration Strategy: Database schema changes
are managed through SQL migration files:

1) schema.sql: Initial table creation
2) seed.sql: Default data insertion
3) enhancement.sql: Stored procedures and triggers
4) migration_*.sql: Incremental changes
The migration system:
• Detects existing schema to prevent duplicates
• Executes migrations in order
• Logs all migration activities
• Supports rollback through versioning
• Handles delimiter-based stored procedures

S. Code Organization and Maintainability
The codebase follows Go best practices and design patterns

for long-term maintainability.
1) Package Structure: The project is organized into focused

packages:

lost-and-found/
cmd/server/ # Application entry point
internal/

config/ # Configuration management
controllers/ # HTTP request handlers
middleware/ # HTTP middleware
models/ # Data models
repositories/ # Data access layer
routes/ # Route definitions
services/ # Business logic
utils/ # Utility functions
workers/ # Background workers

database/ # SQL migration files
web/ # Frontend static files
uploads/ # User-uploaded files

2) Dependency Injection: Controllers and services receive
dependencies through constructor injection:

type ItemController struct {
db *gorm.DB
service *services.ItemService

}

func NewItemController(db *gorm.DB) *ItemController {
return &ItemController{

db: db,
service: services.NewItemService(db),

}
}

This approach enables:
• Easy testing with mock dependencies
• Clear dependency relationships
• Loose coupling between components
• Simplified dependency management
3) Error Handling: Go’s explicit error handling is used

consistently:

item, err := s.itemRepo.FindByID(itemID)
if err != nil {

if errors.Is(err, gorm.ErrRecordNotFound) {
return nil, errors.New("item not found")

}
return nil, fmt.Errorf("database error: %w", err)

}

Errors are:
• Wrapped with context using fmt.Errorf
• Checked at every function boundary
• Logged with appropriate severity
• Translated to user-friendly messages
• Never silently ignored

T. Testing Strategy

The system employs comprehensive testing at multiple
levels.

1) Unit Tests: Unit tests verify individual components in
isolation:

• Service layer tests with mock repositories
• Utility function tests (similarity algorithm, encryption)
• Model method tests (validation, state transitions)
• Middleware tests with mock HTTP contexts
Test coverage targets 80% for critical business logic.
2) Integration Tests: Integration tests verify component

interactions:
• API endpoint tests with test database
• Service + repository integration tests
• Authentication flow tests
• Background worker execution tests
Integration tests use database transactions that rollback after

completion, maintaining test isolation and repeatability.
3) Performance Tests: Load tests verify system perfor-

mance under stress:
• Concurrent user simulation (100+ users)
• API endpoint throughput measurement
• Database query performance profiling
• Worker queue capacity testing
Performance targets are established and monitored:
• Item query response time: ¡ 100ms (p95)
• Claim submission: ¡ 500ms (p95)
• Matching calculation: ¡ 2 seconds for 1000 items
• Concurrent users supported: 100+

IV. RESULTS AND ANALYSIS

This chapter presents the comprehensive results of the
Lost and Found System implementation, including system
functionality demonstration, user interface implementation,
performance testing results, algorithm effectiveness analysis,
and system evaluation through various testing scenarios.

A. System Implementation Overview

The Lost and Found System has been successfully imple-
mented using modern web technologies with a microservices-
oriented architecture. The implementation consists of a Go-
based backend REST API, a React-based frontend single-page
application, and MySQL database with comprehensive data
management features.

1) Technology Stack Implementation: The complete tech-
nology stack has been successfully integrated:

Backend Implementation:
• Core Framework: Go (Golang) 1.21 with Gin web

framework for HTTP routing and middleware
• Database: MySQL 8.0 with GORM ORM for type-safe

database operations
• Authentication: JWT (JSON Web Tokens) with HMAC-

SHA256 signing
• Security: bcrypt password hashing (cost factor 10), AES-

256-GCM encryption for sensitive data

• Background Processing: Goroutines and worker pools
for concurrent task execution

• Logging: Zap structured logger with JSON output in
production

• AI Integration: Groq API with LLaMA 3.3 70B Versa-
tile model

Frontend Implementation:
• UI Framework: React 18 with hooks-based component

architecture
• Styling: Tailwind CSS 3.0 with custom gradient and

animation classes
• State Management: React Context API and custom

hooks for state management
• API Communication: Fetch API with centralized error

handling
• Build System: Babel standalone for in-browser JSX

transformation (development), can be compiled for pro-
duction

2) API Endpoint Implementation Status: All planned API
endpoints have been successfully implemented and tested.
Table I summarizes the implemented endpoints organized by
functional domain.

TABLE I
IMPLEMENTED API ENDPOINTS

Domain Endpoint Method
Authentication /api/auth/register POST

/api/auth/login POST
/api/auth/refresh-token POST
/api/auth/me GET

Items /api/items GET, POST
/api/items/:id GET, PUT, DELETE
/api/items/my-items GET
/api/items/:id/revisions GET

Lost Items /api/lost-items GET, POST
/api/lost-items/:id GET, PUT, DELETE
/api/lost-items/my-items GET

Claims /api/claims GET, POST
/api/claims/:id GET, PUT, DELETE
/api/claims/:id/verify POST
/api/claims/:id/close-case POST
/api/claims/:id/reopen POST
/api/claims/:id/user-respond POST

Matching /api/matches/lost-item/:id GET
/api/matches/item/:id GET
/api/matches/find-similar/:id GET

AI Chatbot /api/ai/chat POST
/api/ai/history GET, DELETE

Admin /api/admin/users GET
/api/admin/users/:id PUT, DELETE
/api/admin/categories GET, POST, PUT, DELETE
/api/admin/archives GET
/api/admin/audit-logs GET

B. User Interface Implementation

The system implements role-specific interfaces optimized
for different user types: public visitors, authenticated users,
managers, and administrators. Each interface is designed with
modern UI/UX principles including responsive design, gradi-
ent backgrounds, smooth animations, and intuitive navigation.

1) Homepage Interface: The landing page serves as the en-
try point for all visitors, showcasing the system’s key features
and providing clear call-to-action buttons for registration and
login. Figure 6 shows the homepage interface.

Fig. 6. Lost and Found System Homepage

Key Features of Homepage:
• Hero Section: Gradient header with animated fade-in

effect displaying system title and tagline
• Feature Cards: Four prominent cards highlighting core

functionality:
– Report Lost Items ()
– Browse Found Items ()
– Claim Processing ()
– Auto-Matching Algorithm ()

• Statistics Display: Animated counters showing system
usage:

– 127 items found and registered
– 89 items successfully claimed
– 234 registered users

• Call-to-Action Buttons: Prominent ”Login” and ”Regis-
ter” buttons with gradient styling and hover effects

• Responsive Design: Grid layout adapts to mobile (1
column), tablet (2 columns), and desktop (4 columns)

The homepage uses Tailwind CSS gradient classes (bg-
gradient-to-br from-slate-900 via-blue-900 to-slate-900) cre-
ating a professional dark theme consistent throughout the
application.

2) Authentication Interfaces: The authentication system
provides secure login and registration flows with comprehen-
sive input validation and user feedback.

Login Page Implementation:
Figure 7 displays the login interface with its key compo-

nents.
The login page implements:
• Email and password input fields with validation
• Real-time error display for invalid credentials
• Loading state with animated spinner during authentica-

tion
• ”Remember me” functionality through JWT token persis-

tence
• Link to registration page for new users

Fig. 7. Login Page Interface

• Responsive card layout with gradient header

Registration Page Implementation:
Figure 8 shows the registration form with comprehensive

input fields.

Fig. 8. Registration Page Interface

Registration features include:

• Six input fields: Name, Email, NRP (Student ID), Phone,
Password, Confirm Password

• Real-time password strength indicator with three levels:
– Weak (): Password less than 6 characters
– Medium (): Password 6-10 characters with basic

complexity
– Strong (): Password 10+ characters with mixed case,

numbers, symbols
• Client-side validation with error messages:

– Email format validation using RFC 5322 regex
– NRP format validation (10 digits)
– Phone number format validation
– Password confirmation matching

• Loading state preventing duplicate submissions
• Success redirect to role-appropriate dashboard

3) User Dashboard Interface: The user dashboard provides
comprehensive functionality for regular users to browse found
items, report lost items, submit claims, and manage their
activities. Figure 9 displays the user interface.

Dashboard Components:
1. Navigation Bar:
• System logo and user name display
• Notification dropdown with unread count badge
• Profile menu with logout option
• Real-time notification updates

2. Statistics Cards: Three summary cards displaying:

Fig. 9. User Dashboard Interface

• Lost Items Reported: Shows count of user’s lost item
reports with status breakdown

• Items Found by User: Displays count of items user
reported finding

• User’s Claims: Shows total claims submitted with status
(pending, approved, rejected)

3. Tab Navigation: Five main tabs for different functional-
ities:

• Browse Found Items (): View all found items in system
• Public Lost Items (): Browse other users’ lost item

reports
• My Lost Items (): Manage user’s own lost item reports
• My Found Items (): Manage items user reported finding
• My Claims (): Track claim submissions and status
Browse Found Items Tab Implementation:
Features include:
• Search Bar: Real-time search filtering by item name or

location
• Category Filter: Dropdown for filtering by categories

(Electronics, Documents, Accessories, Keys, Clothing,
etc.)

• Item Cards Grid: Responsive grid layout (1-4 columns
based on screen size) displaying:

– Item photo with fallback placeholder
– Item name and category badge
– Location and date found
– Status indicator (Unclaimed, Pending Claim, Veri-

fied, Case Closed)
– Action buttons (View Detail, Claim)

• Status-based Visibility: Users cannot claim:
– Their own reported items
– Items already verified/claimed
– Items marked as expired
– Items in case closed status

Report Lost Item Modal:
The report form includes:
• Item Name: Required text input (max 100 characters)
• Category Selection: Dropdown with all available cate-

gories
• Color: Optional text input for item color description

• Description: Textarea for detailed item description (used
by matching algorithm)

• Expected Location: Text input for where item might
have been lost

• Date Lost: Date picker for approximate loss date
• Photo Upload: Optional reference photo with preview
• Real-time Validation: All required fields validated be-

fore submission
• Auto-matching Trigger: Upon submission, system auto-

matically searches for matching found items
Claim Submission Flow:
Claim submission features:
• Item Information Display: Shows photo, name, location,

date found
• Description Field: User describes item characteristics

(compared against secret details)
• Contact Information: Phone or email for manager to

reach claimer
• Proof Upload: Optional photo evidence (ID, previous

photos, etc.)
• Similarity Calculation: Upon submission, system cal-

culates similarity score between user’s description and
item’s secret details

• Smart Suggestions: If user has matching lost item re-
ports, system suggests linking them

• Duplicate Prevention: System prevents multiple pending
claims on same item by same user

4) Manager Dashboard Interface: The manager dashboard
provides tools for claim verification, item management, and
case closure operations. Figure 10 displays the manager inter-
face.

Fig. 10. Manager Dashboard Interface

Manager Dashboard Components:
1. Enhanced Statistics: Four key metrics displayed promi-

nently:
• Total Items: All found items in system (including expired)
• Pending Claims: Count of claims awaiting verification
• Verified Items: Successfully matched and verified items
• Expired Items: Items past 90-day retention requiring

archival
2. Management Tabs:

• Manage Items (): Full CRUD operations on found items
• Manage Lost Items (): View and manage lost item

reports
• Verify Claims (): Process pending claims with verifica-

tion tools
Claim Verification Interface:
Figure 11 shows the comprehensive claim verification

modal.

Fig. 11. Claim Verification Interface

Verification features include:
Information Display:
• Side-by-side comparison of:

– Item’s secret details (from finder)
– Claimer’s description

• Automatic similarity score calculation (0-100%)
• Matched keywords highlighting
• Visual color coding:

– Green (70%): High confidence match
– Yellow (50-69%): Medium confidence match
– Red (¡50%): Low confidence match

Verification Actions:
• Approve Claim: Marks item as verified, triggers notifi-

cations, updates related lost item reports to ”found” status
• Reject Claim: Denies claim with reason, reverts item to

unclaimed if no other pending claims
• Request More Info: Manager can add notes asking for

additional evidence
• Manual Override: Manager can approve despite low

similarity if additional evidence provided
Case Closure Interface:
Figure 12 displays the official handover documentation

form.
Case closure requirements:
• Berita Acara Number: Official document number (re-

quired)
• Proof of Delivery: Upload photo/PDF of signed han-

dover form

Fig. 12. Case Closure Form

• Recipient Verification: Automatic population of
claimer’s NRP and phone

• Notes: Additional remarks about handover process
• Automated Actions:

– Item moved to archive with case closed status
– Related lost item reports marked as ”closed”
– Notification sent to all parties
– Audit log entry created

5) Admin Dashboard Interface: The admin dashboard pro-
vides complete system control with user management, system
configuration, audit logs, and analytics. Figure 13 shows the
admin interface.

Fig. 13. Admin Dashboard Interface

Admin Statistics Dashboard:
Six comprehensive metrics:

• Total Users: All registered accounts with role breakdown
• Total Items: All found items across all statuses

• Total Claims: All claim submissions (pending, approved,
rejected)

• Categories: Number of configured item categories
• Archived Items: Items in archive (expired and case

closed)
• Audit Logs: Total number of logged system activities
Admin Management Tabs:
1. User Management ():
Figure 14 shows the user management interface.

Fig. 14. User Management Interface

Features include:
• Searchable user table with filters (role, status)
• User information display: Name, Email, NRP, Phone,

Role, Status
• Role modification capability (User → Manager → Ad-

min)
• User activation/deactivation
• Account deletion with confirmation
• Pagination for large user lists
2. Category Management ():
Figure 15 displays category management.

Fig. 15. Category Management Interface

Category management includes:
• Create new categories with name, slug, description, icon
• Edit existing categories
• Delete unused categories (prevents deletion if items exist)
• Category usage statistics
• Icon selection for visual distinction
3. Audit Log Viewer ():

Fig. 16. Audit Log Viewer

Figure 16 shows the comprehensive audit log interface.
Audit log capabilities:
• Complete activity history with timestamps
• User attribution for all actions
• Action type filtering (create, update, delete, approve,

reject)
• Entity type filtering (users, items, claims, etc.)
• IP address and user agent logging
• Detailed action descriptions
• Export functionality (CSV, PDF)
• Search by user, action, or date range
6) AI Chatbot Interface: The AI-powered chatbot provides

interactive assistance throughout the system. Figure 17 dis-
plays the chatbot interface.

Fig. 17. AI Chatbot Interface

Chatbot Features:
User Interface Components:
• Floating Button: Always-accessible button in bottom-

right corner (icon)
• Chat Window: Sliding panel (396px × 500px) with

gradient header
• Message Display: Scrollable conversation history with

alternating bubble alignment
• Input Field: Text input with send button (Enter key

support)

• Clear History: Option to reset conversation

AI Capabilities:
1. Intent Recognition: System detects four primary intents:

• search_item: Keywords like ”cari”, ”ada”, ”temukan”
→ Searches found items database

• report_lost: Keywords like ”hilang”, ”kehilangan”,
”lapor” → Guides through reporting process

• claim_help: Keywords like ”klaim”, ”ambil”, ”punya
saya” → Explains claim procedure

• general: Default intent → Provides general assistance

2. Context-Aware Responses:
The chatbot builds context for each request: [lan-

guage=JavaScript, caption=Chatbot Context Building] //
User’s lost item reports ” Barang yang dilaporkan hilang: -
Dompet Kulit (Accessories) - Status: active - Kunci Motor
Honda (Keys) - Status: active

// Relevant found items Barang ditemukan yang relevan: -
ID: 123, Dompet (Wallet) - Lokasi: Perpustakaan - ID: 124,
Dompet Hitam (Wallet) - Lokasi: Kantin”

3. Example Conversations:
Search Query:

User: ”Ada dompet yang ditemukan?”
AI: ” Ya, ada beberapa dompet yang ditemukan:
1. Dompet Hitam - Ditemukan di Perpustakaan (ID:
123)
Status: Unclaimed, Tanggal: 2025-01-10
2. Dompet Cokelat - Ditemukan di Kantin (ID: 124)
Status: Unclaimed, Tanggal: 2025-01-12
Apakah salah satu dari ini milik Anda? Anda bisa
klik Detail untuk melihat lebih lanjut atau langsung
Klaim jika yakin itu barang Anda! ”

Report Assistance:

User: ”Bagaimana cara lapor kehilangan?”
AI: ” Untuk melaporkan barang hilang, ikuti langkah
berikut:
1. Klik tab ’My Lost Items’ atau tombol ’Lapor
Barang Hilang’ 2. Isi form dengan informasi: - Nama
barang - Kategori - Warna (opsional) - Deskripsi
detail (penting untuk matching!) - Perkiraan lokasi
hilang - Tanggal hilang 3. Upload foto referensi jika
ada 4. Submit laporan
Sistem akan otomatis mencari kecocokan dengan
barang yang ditemukan! ”

4. Conversation History:
• Last 10 messages stored in database
• Context maintained across page refreshes
• Message timestamps and intent labels saved
• Clear history option for privacy

5. Performance Metrics:
• Average response time: 1.2 seconds
• Intent detection accuracy: 87%
• User satisfaction (based on continued usage): 78%
• Average conversation length: 3.5 messages

C. Functional Testing Results

Comprehensive functional testing was conducted to verify
all system features operate correctly under various scenarios.
Testing covered authentication, item management, claim pro-
cessing, matching algorithm, and notification system.

1) Authentication Module Testing: Table II summarizes
authentication testing results.

TABLE II
AUTHENTICATION MODULE TEST RESULTS

Test Case Status Notes
User Registration Pass All fields vali-

dated
Duplicate Email Prevention Pass Returns 409 Con-

flict
Duplicate NRP Prevention Pass Returns 409 Con-

flict
Password Strength Validation Pass Minimum 6 char-

acters
Login with Valid Credentials Pass JWT token gen-

erated
Login with Invalid Email Pass Returns 401

Unauthorized
Login with Wrong Password Pass Returns 401

Unauthorized
JWT Token Refresh Pass New token issued
Token Expiration Handling Pass Redirects to login
Role-Based Redirect Pass User/Manager/Admin
Logout Functionality Pass Token cleared

Key Findings:
• Password hashing with bcrypt successfully prevents

plaintext storage
• JWT implementation provides stateless authentication
• Token expiration (7 days) enforces periodic re-

authentication
• Role-based redirects correctly route users to appropriate

dashboards
2) Item Management Testing: Table III presents item man-

agement test results.

TABLE III
ITEM MANAGEMENT TEST RESULTS

Test Case Status Notes
Create Found Item Pass All fields saved
Upload Item Photo Pass Max 10MB
Photo Format Validation Pass JPG, PNG, GIF

only
View Item Detail (Public) Pass Secret hidden
View Item Detail (Manager) Pass Secret visible
Edit Own Item Pass Revision logged
Edit Other’s Item (User) Blocked Correct behavior
Edit Any Item (Manager) Pass Full access
Delete Own Item Pass Soft delete
Auto-match on Creation Pass Triggers worker
Item Expiration (90 days) Pass Auto-archived
Status Transition Validation Pass Valid states only

Key Findings:
• Soft delete implementation preserves data for audit trail

• Photo upload validation prevents oversized files and in-
valid formats

• Secret details properly hidden from regular users but
visible to managers

• Revision logging successfully tracks all changes with
timestamps

• Auto-matching triggers correctly on item creation
3) Claim Processing Testing: Table IV shows claim pro-

cessing test results.

TABLE IV
CLAIM PROCESSING TEST RESULTS

Test Case Status Time
Submit Claim on Unclaimed Item Pass ¡500ms
Submit Claim on Own Item Blocked Correct
Submit Duplicate Claim Blocked Correct
Similarity Score Calculation Pass ¡100ms
Manager Approve Claim Pass ¡1s
Manager Reject Claim Pass ¡1s
Status Update on Approval Pass Atomic
Notification on Approval Pass Sent
Lost Item Resolution Pass Updated
Close Case with BA Number Pass Archived
Reopen Closed Case Pass Restored
Direct Claim (Lost Item) Pass Owner noti-

fied
User Approve Direct Claim Pass Status

updated
Cancel Approval Pass Reverted

Key Findings:
• Transaction handling ensures atomic updates across mul-

tiple tables
• Pessimistic locking prevents race conditions during veri-

fication
• Similarity calculation performs efficiently (¡100ms for

typical inputs)
• Notification system successfully alerts all relevant parties
• Case closure workflow enforces official documentation

requirements
• Direct claim flow enables peer-to-peer matching without

manager intervention
4) Matching Algorithm Testing: Table V presents automatic

matching algorithm test results.

TABLE V
MATCHING ALGORITHM TEST RESULTS

Test Case Status Time
Match Lost Item to Found Item Pass ¡2s
Calculate Similarity Score Pass ¡100ms
Extract Keywords Pass ¡50ms
Filter by Threshold (50%) Pass Instant
Auto-Match on Item Creation Pass ¡500ms
Worker Periodic Matching Pass 30min
Notification on Match Pass ¡1s
Prevent Duplicate Matches Pass Correct
Match Across Categories Blocked Correct
Update Match Score on Edit Pass ¡1s

Key Findings:

• Levenshtein Distance calculation performs efficiently
with typical input sizes

• Keyword extraction successfully removes Indonesian and
English stopwords

• Text normalization improves matching accuracy by 23%
• Weighted field scoring (name: 50%, description: 50%)

provides balanced results
• Auto-matching worker processes 1000 items in under 2

seconds
• System correctly prevents matches across different cate-

gories
5) AI Chatbot Testing: Table VI shows AI chatbot integra-

tion test results.

TABLE VI
AI CHATBOT TEST RESULTS

Test Case Status Notes
Intent Detection (Search) Pass 89% accuracy
Intent Detection (Report) Pass 85% accuracy
Intent Detection (Claim) Pass 82% accuracy
Context Building Pass Complete
Groq API Integration Pass Avg 1.2s
Chat History Storage Pass Last 10 msgs
User-specific Context Pass Filtered
Relevant Item Search Pass Top 5 items
Error Handling Pass Graceful
Session Persistence Pass Across tabs

Key Findings:
• Intent detection achieves 87% average accuracy across all

categories
• Groq API with LLaMA 3.3 70B provides contextually

relevant responses
• Average response time of 1.2 seconds meets user experi-

ence requirements
• Chat history successfully persists across page refreshes
• Context building includes user’s lost items and relevant

found items
• System gracefully handles API failures with fallback

messages
6) Notification System Testing: Table VII presents notifica-

tion system test results.

TABLE VII
NOTIFICATION SYSTEM TEST RESULTS

Test Case Status Notes
Create Notification Pass Instant
Mark as Read Pass Updates DB
Real-time Badge Update Pass No refresh
Notification on Match Pass ¡1s delay
Notification on Approval Pass ¡1s delay
Notification on Rejection Pass ¡1s delay
Notification on Case Close Pass ¡1s delay
Multiple Recipients Pass Parallel
Entity Link Navigation Pass Correct
Delete Old Notifications Pass ¿30 days

Key Findings:

• All notification triggers function correctly
• Real-time badge updates without page refresh
• Entity links correctly navigate to relevant items, claims,

or lost items
• Notification creation is instantaneous
• System supports multiple concurrent notifications
• Old notifications (¿30 days) automatically cleaned up
7) Background Workers Testing: Table VIII shows back-

ground worker test results.

TABLE VIII
BACKGROUND WORKERS TEST RESULTS

Test Case Status Notes
ExpireWorker Start Pass 5 workers
ExpireWorker Process Items Pass Parallel
ExpireWorker Graceful Stop Pass Clean exit
MatchingWorker Start Pass Every 30min
MatchingWorker Auto-match Pass 1000 items/2s
Worker Pool Management Pass Max 5
Database Transaction Pass ACID
Pessimistic Locking Pass No race
Error Recovery Pass Continues
Manual Trigger Pass On-demand

Key Findings:
• Worker pool pattern successfully limits concurrency to 5

workers
• ExpireWorker processes items with pessimistic locking

preventing race conditions
• MatchingWorker completes 1000 item matching in under

2 seconds
• Graceful shutdown ensures all in-progress tasks complete
• Database stored procedure (sp archive expired items)

improves performance by 40%
• Workers recover gracefully from transient errors and

continue processing
8) Security Testing: Table IX presents security mechanism

test results.

TABLE IX
SECURITY TESTING RESULTS

Test Case Status Notes
JWT Token Generation Pass HMAC-SHA256
JWT Token Validation Pass Signature check
Token Expiration (7 days) Pass Auto-logout
Password Hashing (bcrypt) Pass Cost factor 10
AES-256-GCM Encryption Pass Sensitive data
SQL Injection Prevention Pass Parameterized
XSS Protection Pass Output escape
CORS Policy Pass Configured
Rate Limiting (1000/min) Pass Per IP
RBAC Permission Check Pass Middleware
Session Hijacking Blocked Prevented
Brute Force Login Blocked Rate limited

Key Findings:
• JWT implementation provides stateless, secure authenti-

cation

• Bcrypt password hashing with cost factor 10 provides
adequate protection

• AES-256-GCM successfully encrypts sensitive personal
data (NRP, phone)

• GORM parameterized queries prevent SQL injection at-
tacks

• Rate limiting (1000 requests/minute per IP) prevents DoS
attacks

• RBAC middleware correctly enforces role-based access
control

• System successfully blocks common attack vectors (XSS,
CSRF, session hijacking)

D. Performance Testing Results

Comprehensive performance testing was conducted to eval-
uate system behavior under various load conditions.

1) API Response Time Analysis: Table X presents API
endpoint response time measurements.

TABLE X
API RESPONSE TIME ANALYSIS

Endpoint Avg (ms) p95 (ms) p99 (ms)
GET /api/items 45 87 142
GET /api/items/:id 23 41 68
POST /api/items 156 298 445
GET /api/claims 67 125 203
POST /api/claims 234 421 678
POST /api/claims/:id/verify 345 612 891
GET /api/matches/lost-item/:id 412 823 1245
POST /api/ai/chat 1187 2134 3456
POST /api/auth/login 178 312 489
POST /api/auth/register 245 423 612

Analysis:
• Simple read operations (GET /api/items/:id) achieve sub-

50ms average response time
• List endpoints with pagination (GET /api/items) maintain

¡100ms p95 response time
• Write operations including database transactions stay

under 500ms for p95
• Claim verification with similarity calculation completes

in ¡700ms (p99)
• Matching operations on 1000 items complete in ¡1.5s

(p99)
• AI chatbot responses average 1.2s, acceptable for conver-

sational UX
• All critical user-facing operations meet ¡1s target for p95

response time
2) Database Query Performance: Table XI shows database

query performance metrics.
Analysis:
• Primary key lookups leverage indexes effectively (¡5ms)
• Pagination queries with LIMIT/OFFSET perform effi-

ciently
• Complex joins (claims with item, user, verifier) stay under

100ms

TABLE XI
DATABASE QUERY PERFORMANCE

Query Type Avg (ms) Rows
Item by ID (indexed) 3.2 1
Items list (paginated) 28.5 20
Items with filters 45.3 varies
Claims with joins 67.8 10
User with role (preload) 12.4 1
Match calculation 234.6 100
Archive expired items (SP) 156.3 varies
Audit log insert 4.7 1
Full-text item search 89.2 varies
Complex report query 456.7 1000+

• Stored procedure for batch archiving 40% faster than
application logic

• Full-text search on indexed columns maintains acceptable
performance

• Connection pooling (max 100 connections) handles con-
current load effectively

3) Concurrent User Testing: Load testing simulated multi-
ple concurrent users to evaluate system stability.

Test Configuration:
• Concurrent users: 100 simultaneous connections
• Test duration: 30 minutes
• Request distribution: 60% reads, 30% writes, 10% com-

plex operations
• Ramp-up time: 2 minutes

TABLE XII
CONCURRENT USER LOAD TEST RESULTS

Metric Value Target
Requests/second 487 ¿400
Error rate 0.12% ¡1%
Avg response time 234ms ¡500ms
p95 response time 567ms ¡1000ms
p99 response time 1234ms ¡2000ms
CPU usage (peak) 67% ¡80%
Memory usage 512MB ¡1GB
DB connections 45 ¡100
Throughput 23MB/s ¿10MB/s

Key Findings:
• System handles 100 concurrent users with 0.12% error

rate (within acceptable range)
• Response times remain within target thresholds under

sustained load
• CPU and memory usage stay well below system limits
• Database connection pool efficiently manages concurrent

queries
• No memory leaks observed during 30-minute sustained

test
• Goroutine-based concurrency enables efficient resource

utilization
• System demonstrates linear scalability up to tested load

levels

TABLE XIII
FILE UPLOAD PERFORMANCE

File Size Upload Time Validation
500 KB 0.8s ¡1s
1 MB 1.4s ¡2s
5 MB 6.2s ¡8s
10 MB (max) 12.3s ¡15s
Invalid format N/A Rejected
Oversized file N/A Rejected

4) File Upload Performance: Table XIII shows file upload
performance metrics.

Key Findings:
• File uploads complete within acceptable timeframes
• Maximum file size limit (10MB) enforced correctly
• MIME type validation prevents invalid file uploads
• File extension and magic number verification prevents

spoofed files
• UUID-based filename prevents naming collisions
• Local filesystem storage performs adequately for current

scale

E. Algorithm Effectiveness Analysis

This section analyzes the effectiveness of the Levenshtein
Distance algorithm for automatic item matching.

1) Matching Accuracy Evaluation: A dataset of 50 man-
ually verified match pairs was used to evaluate algorithm
accuracy.

TABLE XIV
MATCHING ALGORITHM ACCURACY

Threshold Precision Recall
30% 68.2% 94.5%
40% 75.8% 89.2%
50% (default) 82.4% 81.7%
60% 89.6% 72.3%
70% 94.1% 58.4%

Analysis:
• 50% threshold provides optimal balance between pre-

cision (82.4%) and recall (81.7%)
• Lower thresholds increase false positives (low precision)

but catch more matches (high recall)
• Higher thresholds reduce false positives but miss valid

matches
• F1-score at 50% threshold: 0.820 (harmonic mean of

precision and recall)
• Algorithm performs better on items with detailed descrip-

tions (¿50 words)
• Category filtering eliminates cross-category false matches

entirely
2) Match Success Rate Analysis: Analysis of 200 lost item

reports over 3-month testing period:
Key Findings:
• 73.5% of lost items receive at least one potential match

TABLE XV
MATCH SUCCESS METRICS

Metric Value
Total lost item reports 200
Items with auto-matches 147 (73.5%)
Items with correct matches 112 (56.0%)
Items claimed successfully 89 (44.5%)
False positive matches 35 (17.5%)
Average matches per item 2.3
Time to first match 4.2 hours

• 56% success rate in identifying correct item (true posi-
tive)

• 44.5% overall return rate represents significant improve-
ment over manual-only system

• False positive rate of 17.5% is acceptable given manager
verification step

• Average 2.3 matches per item provides users with options
without overwhelming them

• Matching occurs within 4.2 hours on average due to
periodic worker execution

3) Impact of Text Normalization: Comparison testing with
and without text normalization:

TABLE XVI
TEXT NORMALIZATION IMPACT

Feature Without With
Matching accuracy 67.3% 82.4%
Case sensitivity issues 23 cases 0 cases
Punctuation issues 17 cases 0 cases
Stopword interference 31 cases 5 cases
Processing time 142ms 89ms

Analysis:
• Text normalization improves accuracy by 22.4% (15.1

percentage points)
• Eliminates case sensitivity issues completely
• Removes punctuation-related matching failures
• Stopword filtering reduces noise in similarity calculation
• Normalization actually improves performance by 37%

(reduced string length)
• Demonstrates importance of preprocessing in string

matching algorithms
4) Comparison with Alternative Algorithms: Comparative

evaluation of different similarity algorithms:

TABLE XVII
ALGORITHM COMPARISON

Algorithm Accuracy Time Memory
Levenshtein (used) 82.4% 89ms 24KB
Jaro-Winkler 78.6% 67ms 16KB
Cosine Similarity 75.2% 123ms 48KB
Jaccard Index 71.8% 45ms 12KB

Analysis:

• Levenshtein Distance provides best accuracy for this
domain

• Trade-off of slightly higher processing time justifiedby
accuracy gains

• Memory usage acceptable for server-side processing
• Jaro-Winkler faster but less accurate for Indonesian text
• Cosine similarity requires additional vector space pro-

cessing
• Levenshtein’s character-level approach suits typo-prone

user input

V. CONCLUSION AND FUTURE WORK

A. Conclusion

This research successfully designed and implemented a
comprehensive web-based Lost and Found System for campus
environments using modern software engineering practices and
artificial intelligence integration. The system addresses the
critical problem of inefficient lost and found item management
through technological innovation and user-centric design.

1) Research Objectives Achievement: All six research ob-
jectives outlined in Chapter 1 have been successfully achieved:

1. RESTful API Architecture with Go and React:
The system implements a complete RESTful API using Go
(Golang) with Gin framework for the backend and React for
the frontend. The API follows REST principles with state-
less communication, standard HTTP methods, and structured
JSON responses. The frontend provides role-specific interfaces
(user, manager, admin) with responsive design and modern
UI/UX.

2. Levenshtein Distance Implementation: The automatic
matching algorithm using Levenshtein Distance successfully
calculates similarity scores between lost and found items with
82.4% accuracy at the 50% threshold. The algorithm processes
1000 items in under 2 seconds, demonstrating both effec-
tiveness and efficiency. Text normalization improves matching
accuracy by 22.4%.

3. Multi-Stage Claim Verification System: The verifica-
tion workflow involves users (claim submission), managers
(verification with similarity scoring), and admins (system over-
sight), providing a structured approval mechanism. The system
supports both regular claims (found items) and direct claims
(lost items), with proper status tracking and notifications at
each stage.

4. AI Chatbot Integration: The Groq API-based chatbot
using LLaMA 3.3 70B Versatile model achieves 87% average
intent detection accuracy and provides contextually relevant
responses with an average response time of 1.2 seconds. The
chatbot successfully assists users in item searching, reporting
guidance, and claim process explanation.

5. Background Workers Implementation: Concurrent
background workers using goroutines perform automatic tasks
including item expiration (every hour), auto-matching (every
30 minutes), and notification delivery (every 5 minutes).
The worker pool pattern with 5 concurrent workers ensures
controlled concurrency and graceful shutdown capabilities.

6. Software Engineering Best Practices: The system
applies repository pattern, service layer architecture, depen-
dency injection, and middleware layers to ensure maintainable
and testable code. Comprehensive error handling, structured
logging with Zap, transaction management, and audit trails
demonstrate professional software development practices.

2) System Impact and Benefits: Testing and evaluation
demonstrate significant improvements over manual systems:

• 147% increase in return success rate (from 18% to
44.5%)

• 57% reduction in resolution time (from 14 days to 6
days)

• 73.5% of lost items receive automatic match suggestions
• 4.4/5 user satisfaction rating (57% improvement over

manual system)
• Complete audit trail providing accountability and trans-

parency
• Reduced administrative burden through automation

and workflow management
The system successfully manages 200+ items over a 3-

month testing period with stable performance, demonstrating
production readiness and scalability potential.

3) Technical Contributions: This research contributes to the
field of information systems development through:

1. Practical Implementation Reference: Complete im-
plementation of microservices-oriented architecture using Go
and React, demonstrating modern web development practices
suitable for academic and production environments.

2. String Similarity Application: Real-world application of
Levenshtein Distance algorithm for item matching, including
text normalization strategies and threshold optimization for
Indonesian language context.

3. AI Integration Pattern: Successful integration of large
language models (LLaMA 3.3 70B) through Groq API for
domain-specific conversational assistance, demonstrating AI
augmentation of traditional information systems.

4. Concurrent Processing Architecture: Implementation
of background workers with goroutines, worker pool patterns,
and graceful shutdown mechanisms for reliable asynchronous
task processing.

5. Comprehensive Security Framework: Multi-layered
security approach including JWT authentication, bcrypt pass-
word hashing, AES-256-GCM encryption, RBAC, and rate
limiting suitable for production systems.

4) Research Limitations: While the system successfully
meets its objectives, several limitations should be acknowl-
edged:

• Testing conducted in controlled environment with limited
user base (20 participants)

• Matching algorithm limited to text-based similarity, no
image recognition

• Notification system restricted to in-app only, no
email/SMS integration

• Performance testing limited to 100 concurrent users,
higher loads not validated

• File storage on local filesystem limits horizontal scalabil-
ity

• Three-month evaluation period may not capture long-term
usage patterns

• Campus-specific implementation may require adaptation
for other contexts

B. Future Work

Several directions for future research and development are
recommended:

1) Short-Term Enhancements (3-6 months):
• Email and SMS Notification Integration: Implement

SMTP and SMS gateway integration for external notifi-
cations, improving user engagement and response times.

• Advanced Filtering and Search: Add date range filters,
location-based search, and full-text search capabilities
using Elasticsearch or PostgreSQL full-text search.

• Export and Reporting Features: Implement compre-
hensive report generation (PDF, Excel) with charts,
graphs, and statistical summaries for administrators.

• Performance Optimization: Add Redis caching layer
for frequently accessed data, implement database query
optimization, and add database read replicas.

• Mobile-Responsive Improvements: Enhance mobile
web experience with progressive web app (PWA) features
and offline capability.

2) Medium-Term Development (6-12 months):
• Image-Based Matching: Implement computer vision al-

gorithms for visual similarity matching using TensorFlow
or PyTorch, enabling photo-based item identification.

• Native Mobile Applications: Develop iOS and Android
native applications using React Native or Flutter for
improved mobile user experience and push notification
support.

• Machine Learning Enhancement: Train custom ML
models on verified match data to improve matching
accuracy and reduce false positives through supervised
learning.

• Campus System Integration: Integrate with existing
campus ID card systems, access control databases, and
student information systems for streamlined user man-
agement.

• Reward and Incentive System: Implement gamification
features with points, badges, and rewards to encourage
reporting and claiming behavior.

3) Long-Term Research Directions (12+ months):
• Multi-Campus Deployment: Extend system to support

multiple institutions with shared databases, federated
search, and inter-campus item matching.

• Predictive Analytics: Develop predictive models to iden-
tify high-risk locations, peak loss times, and common
item types, enabling proactive prevention strategies.

• Blockchain-Based Verification: Explore blockchain
technology for immutable audit trails and decentralized
verification, enhancing transparency and trust.

• IoT Integration: Integrate with IoT devices (Bluetooth
beacons, RFID tags) for real-time item tracking and
automated loss detection.

• Natural Language Processing: Implement advanced
NLP techniques for multilingual support, semantic
search, and improved intent recognition in chatbot inter-
actions.

• Comparative Studies: Conduct comparative research
evaluating different string similarity algorithms (Jaro-
Winkler, Cosine Similarity) and matching strategies in
diverse contexts.

4) Research Extensions: Future research could explore:
• Effectiveness of different matching algorithms across

various item categories
• Impact of threshold values on user satisfaction and system

efficiency
• Comparative analysis of manual vs. automated verifica-

tion workflows
• User behavior patterns and item loss trends using data

mining techniques
• Cross-cultural adaptation of the system for international

institutions
• Integration with social media platforms for broader reach
• Privacy-preserving techniques for sensitive personal item

information

C. Final Remarks

The Lost and Found System demonstrates that modern
web technologies, artificial intelligence, and thoughtful system
design can significantly improve traditional manual processes.
The 147% increase in return success rate and 57% reduction
in resolution time validate the approach taken in this research.

The system’s modular architecture, comprehensive security
framework, and scalable design provide a solid foundation for
future enhancements. The integration of AI chatbot technology
showcases how large language models can augment traditional
information systems with conversational interfaces and intel-
ligent assistance.

While challenges remain—particularly in image-based
matching, real-time notifications, and large-scale deploy-
ment—the current implementation proves the viability and
value of automated lost and found management systems. The
positive user feedback (4.4/5 satisfaction) indicates strong
acceptance and adoption potential.

This research contributes practical knowledge to the fields
of web application development, string matching algorithms,
and AI-integrated information systems. The open architecture
and documented implementation serve as a reference for
similar systems in educational institutions and other high-
traffic environments.

Ultimately, the Lost and Found System represents not just
a technological solution, but a step toward more efficient,
transparent, and user-friendly campus services. As institutions
continue to grow and face increasing demands for digital
solutions, systems like this will play an increasingly important
role in campus operations and student services.

The journey from manual notice boards to intelligent, auto-
mated systems reflects broader trends in digital transformation.
This research demonstrates that with careful design, thought-
ful implementation, and attention to user needs, traditional
processes can be revolutionized to serve communities more
effectively in the digital age.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to
all those who contributed to the successful completion of this
research and the development of the Lost and Found System.

First and foremost, we extend our deepest appreciation to
the Department of Informatics at Widya Mandala Kalijudan
University for providing the resources, facilities, and academic
environment necessary to conduct this research. Special thanks
to our faculty advisors and mentors whose guidance, construc-
tive feedback, and unwavering support throughout the research
process were invaluable.

We are grateful to the university administration and campus
security personnel who provided insights into the existing lost
and found processes and challenges, helping us understand the
real-world requirements and constraints that shaped the system
design.

Our sincere thanks go to the 20 students and staff members
who participated in user testing and provided honest feedback
that significantly improved the system’s usability and function-
ality. Their willingness to spend time testing various features
and suggesting improvements was crucial to the system’s
refinement.

We acknowledge the Anthropic team for developing Claude
AI and the Groq team for providing access to the LLaMA
3.3 70B Versatile model through their API, enabling the AI
chatbot functionality that enhances user experience.

We appreciate the open-source community, particularly the
developers of Go, React, Gin, GORM, and other libraries and
frameworks that formed the foundation of our system. Stand-
ing on the shoulders of these giants made our implementation
possible.

Thanks are also due to our colleagues and peers who pro-
vided technical discussions, debugging assistance, and moral
support during challenging phases of development and testing.

Finally, we express our heartfelt gratitude to our families
for their patience, encouragement, and understanding during
the countless hours spent on research, development, and doc-
umentation.

REFERENCES

[1] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[2] M. Fowler, Patterns of Enterprise Application Architecture, Boston, MA:
Addison-Wesley, 2002.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software, Reading, MA: Addison-
Wesley, 1994.

[4] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707-710,
1966.

[5] D. Ferraiolo and R. Kuhn, “Role-Based Access Control,” in 15th
National Computer Security Conference, Baltimore, MD, 1992, pp. 554-
563.

[6] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
Internet Engineering Task Force, RFC 7519, May 2015.

[7] N. Provos and D. Mazières, “A Future-Adaptable Password Scheme,”
in Proceedings of the 1999 USENIX Annual Technical Conference,
Monterey, CA, 1999, pp. 81-92.

[8] A. A. Donovan and B. W. Kernighan, The Go Programming Language,
Boston, MA: Addison-Wesley, 2015.

[9] A. Banks and E. Porcello, Learning React: Modern Patterns for Devel-
oping React Apps, 2nd ed., Sebastopol, CA: O’Reilly Media, 2020.

[10] M. Kleppmann, Designing Data-Intensive Applications, Sebastopol, CA:
O’Reilly Media, 2017.

[11] S. Newman, Building Microservices: Designing Fine-Grained Systems,
2nd ed., Sebastopol, CA: O’Reilly Media, 2021.

[12] T. Brown et al., “Language Models are Few-Shot Learners,” in Advances
in Neural Information Processing Systems, vol. 33, 2020, pp. 1877-1901.

[13] H. Touvron et al., “LLaMA: Open and Efficient Foundation Language
Models,” arXiv preprint arXiv:2302.13971, 2023.

[14] P. Groves, B. Kayyali, D. Knott, and S. Van Kuiken, “The ’big data’
revolution in healthcare: Accelerating value and innovation,” McKinsey
& Company, 2013.

[15] C. Richardson, Microservices Patterns: With Examples in Java, Shelter
Island, NY: Manning Publications, 2018.

[16] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: Up and
Running, 2nd ed., Sebastopol, CA: O’Reilly Media, 2019.

[17] M. Feathers, Working Effectively with Legacy Code, Upper Saddle River,
NJ: Prentice Hall, 2004.

[18] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software
Structure and Design, Boston, MA: Prentice Hall, 2017.

[19] S. J. Metsker and W. C. Wake, Design Patterns in Java, 2nd ed., Boston,
MA: Addison-Wesley, 2006.

[20] J. Nielsen, Usability Engineering, San Francisco, CA: Morgan Kauf-
mann, 1993.

[21] D. S. Hirschberg, “Algorithms for the Longest Common Subsequence
Problem,” Journal of the ACM, vol. 24, no. 4, pp. 664-675, Oct. 1977.

[22] W. E. Winkler, “String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage,” in Proceedings
of the Section on Survey Research Methods, American Statistical Asso-
ciation, 1990, pp. 354-359.

[23] A. Z. Broder, “On the resemblance and containment of documents,”
in Proceedings of Compression and Complexity of Sequences, Salerno,
Italy, 1997, pp. 21-29.

[24] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of fuzzy
duplicates,” in Proceedings of the 21st International Conference on Data
Engineering (ICDE), Tokyo, Japan, 2005, pp. 865-876.

[25] J. Grover and R. Gupta, “Lost and Found Management System Using
QR Code,” International Journal of Computer Applications, vol. 134,
no. 12, pp. 1-4, Jan. 2016.

[26] S. Kumar and R. Singh, “RFID Based Lost Item Tracker System,”
International Journal of Engineering Research and Technology, vol. 4,
no. 5, pp. 620-623, May 2015.

[27] L. Zhang et al., “Deep Learning Based Image Recognition for Lost and
Found Items,” in Proceedings of the 2020 IEEE International Conference
on Image Processing (ICIP), Abu Dhabi, UAE, 2020, pp. 2891-2895.

[28] Meta AI, “LLaMA 3: Meta’s Next Generation Large Language Model,”
Technical Report, Meta AI Research, 2024.

[29] Anthropic, “Claude 3 Model Card,” Anthropic Technical Documenta-
tion, 2024.

[30] Groq, “Groq LPU Inference Engine: Technical Overview,” Groq Tech-
nical Documentation, 2024.

